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i

We want to use RL in the real



https://healthtechmagazine.net/article/2020/07/3-trends-will-influence-healthcare-staff-return-work
https://wp.nyu.edu/dispatch/2020/02/10/the-impact-of-online-education-in-academics/
https://www.theverge.com/2020/1/17/21070620/cruise-california-disengagement-report-self-driving-car

The Real World is Tricky

® Many applicationsare high risk.

® It’s oftentimes computationallyinfeasible to try out more than
one algorithm.

® Need manyruns to try different hyperparametersettings.

® |deally, we want to test learning algorithms out on real world
data prior to deployment.
® \We need an evaluator!

https://www.amazon.ca/Crash-Cartoon-Sticker-Decal-Design/dp/B017CZG3UG



Evaluation Overview

Desired actions (or distributions over actions)

Previously-collected

Dataset
Reinforcement
Learning
Evaluator Algorithm
Performance

Estimates Transitions/Observations




How should we create an evaluator?

EvaIuat.eflxed Build a model Importzimce
policy sampling
*Want to deploy a learning *Error accumulates at least *Variance is unusably high if
algorithm quadratically with evaluation algorithm is evaluated for
length (Ross, Gordon and hundreds of time steps (Dudik
*Can’t use a train-test split Bagnell 2011). et al. 2014).
of the data.

*In complex problems, its
unclear how to build such a
model.
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Evaluator 1: Queue-based Evaluator

Index (s;,aq)

Produce policy

| ™ (si) |
Sample a~my, (S;)

Termination:when any queue

-

.

Learning
Algorithm

~

J

| empties
(s;,a;) | RandomOrder ((s;,a,,7,s’) € Dataset)
(s;,a,) | RandomOrder ((s;, a,,7,s') € Dataset)
(sga,) | RandomOrder ((sy,a,,r,s") € Dataset)

(Si; a]_) r; S,)

Potential Problems?
The state action space could be very large

compared to the dataset size.
Could result in early termination!



Leveraging Policy Similarity

e The Queue-based evaluator suffers from sample inefficiency.

(s,ay) (s,a;,1,8")

(s,a,) (s,a,,1,s"),(s,a,,r,5s'), .. (s,a,,1,s")

e |If a,is ever sampled, Queue-based must terminate in the next iteration.
e If we know the sampling distribution, we can do a lot better!

What if the learned policy is the
same as the sampling _

distribution?

Potentiallyall the
data can be used!

Revealed randomness



Evaluator 2: Per State Rejection Sampling (PSRS)

Potential Sq RandomOrder ((s,,a;,r,s") € Dataset)
Problems? RandomOrder (( NeD ,
. &) andomOrder ((s,,a;,1,s") € Dataset
Assumes l S;

\ 4
A

known discrete
state space

S4 RandomOrder ((s3,a;,7,s') € Dataset) Learning

Algorithm

(sy,a;,7m,s’)
a; ~sampling distribution

A

Sampling
distribution | Rejection | Tp

'L Sampler J‘

. . ry .
Reject: new sample Accept: (s;,a;,7,s") : a; ~m

Dataset




Evaluator 3: Per Episode Rejection Sampling (PERS)

] f Rejection ] Tty

Dataset

Sampling Distribution,L Sampler J
Episode

( Learning
L Algorithm

A

Accept:

(o,a,7) : a~my
Potential Problems?

* Could potentially discard many
samples if episodes are long

Reject:
Undo all changes this
episode, reset




Summary of Evaluators

e Queue-based
QO Keep a queue for all (s,a) pairs and store (r,s’)
©@ Data inefficiency
e Per State Rejection Sampling
0" Use rejection sampling to sample transitions from dataset
©® Assumes known state space
e Per Episode Rejection Sampling

Q" Eliminate reliance on known and discrete state by sampling entire episodes

©® Could potentially discard many samples if episodes are long



Offline Evaluation of Online RL Algorithms

v . .
Why we need offline evaluation
Whatis an evaluator?

Why the obvious evaluators don’t work
Three proposed evaluation approachesin this work

(J Properties of an ideal evaluator.

U Dothe proposed evaluators have these properties?

Q Evaluatingthe evaluators: empirical results



6 Properties Of An ldeal Evaluator

1. (s,a,rs’) tuples providedto 4. Evaluator can use data from
algorithm have the same an unknown sampling
distribution as the true MDP. distribution.

Queue N/ PSRS / PERS </ Queue v/ PsRs D PERS X

2. High sample efficiency. 5. Does not assume

“domain dependent” environmentis a discrete
, MDP.

3. Evaluator return§ unbiased Queue x PSRS x PERS v/
performance estimates.

Queue x PSRS x PERSX 6. Computationally efficient.

PERS / Queue v/ PSRS/" PERS ?

variant
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Experiment 1: Six Arms

® Accuracy of PSRS vs. a model-based approach

e Model-based approach uses datasetto build .50 C@ @E?f;‘o’fm
(0-2,1,0)
MLE model. @510 0,10/ 410
(3,0.05,0) =
(0-3,1,0) (1,0.15,0)
Learning algorithm Posterior Sampling (4,1,1660) 2 (1,1,133)
) ) (4,0.03,0) (0.1.0)
Reinforcement Learning (2-5,1,0)
(PSRL), 10 posterior samples (0-4,1,0) ‘5’0-‘“-‘?0_131.0)\(2,0.,.0)
Dataset 100 datasets of 100 samples C@ B=o0
(5.1,6000) @ (2.1.300)
Sampling distribution Uniform .
SixArms
Performance estimate Cumulative reward

Number of runs per dataset 10



PSRS vs Model-based on Six Arms

1000 runs

MSE is over estimated
return vs true return on
environment
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Experiment 2: Treefrog Treasure

e Evaluating sample efficiency

I f’
O
Learning algorithm Posterior Sampling L[S\,nl
Reinforcement Learning v gﬁ?
(PSRL) : -
T1
Dataset Episodes of 11,550 players )
Sampling distribution Semi-uniform

Number of runs per dataset 100

Horizon 3 time steps



Performance of Evaluators on Treefrog Treasure
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(more revealed randomness)



Quick Thoughts On The Evaluation

e Why did they choose these particular environments?

e Why were Queue-based and PERS omitted from the Six Arms
experiment?

e Why didn’t they test fixed policy evaluators?

e Why didn’t they test importance sampling-based approaches?




Conclusion

Evaluation Overview

k.

Dresired AOIDMS. for deson s scsom)
——

Prirvialy aleae
Dalasel
(B

Evaluator algerthm

TramsamiChisraion

Parformance
Eshimabes III’

Rardamrderi|s;, a, r.o") € Salart]

PamdeeBrderi [ig, 4,.r,5") & Datand]

Wi 5)

Learning
Algarahm

(s} oy~ my

Rl g vy [ . 1670 8 Darase]

Peaential Problems?
* ASSUMYS known stabe space

Performance of Evaluators on Treefrog Treasure

n - o -
_ e '_ A
Ll Lo l] |
LRty | Lt
- i R |

— e M RS |

Freyed o ram

Hrwle ol

[
1w 5

xa

e aw A
Pl b

£

1 FERAL posbesior sample 10 PSHL posteriar sarmp ke




