#### **Offline Evaluation of Online Reinforcement Learning Algorithms**

**Travis Mandel<sup>1</sup>, Yun-En Liu<sup>2</sup>, Emma Brunskill<sup>3</sup>, and Zoran Popović<sup>1,2</sup>** <sup>1</sup>Center for Game Science, Computer Science & Engineering, University of Washington, Seattle, WA <sup>2</sup>Enlearn<sup>TM</sup>, Seattle, WA <sup>3</sup>School of Computer Science, Carnegie Mellon University, Pittsburgh, PA {tmandel, zoran}@cs.washington.edu, yunliu@enlearn.org, ebrun@cs.cmu.edu

Presentation by Revan MacQueen

- □ Why we need offline evaluation
  - □ What is an evaluator?
  - □ Why the obvious evaluators don't work
- □ Three proposed evaluation approaches
- Properties of an ideal evaluator
  - Do the proposed evaluators have these properties?
- □ Evaluating the evaluators: empirical results



# We want to use RL in the real world



https://healthtechmagazine.net/article/2020/07/3-trends-will-influence-healthcare-staff-return-work https://wp.nyu.edu/dispatch/2020/02/10/the-impact-of-online-education-in-academics/ https://www.theverge.com/2020/1/17/21070620/cruise-california-disengagement-report-self-driving-car



# The Real World is Tricky

- Many applications are high risk.
- It's oftentimes computationally infeasible to try out more than one algorithm.
- Need many runs to try different hyperparameter settings.
- Ideally, we want to test learning algorithms out on real world data prior to deployment.
- We need an evaluator!



#### **Evaluation Overview**





- ✓ Why we need offline evaluation
  - ☑ What is an evaluator?
  - ☑ Why the obvious evaluators don't work
- **Three proposed evaluation approaches in this work**
- Properties of an ideal evaluator
  - Do the proposed evaluators have these properties?
- □ Evaluating the evaluators: empirical results

# Evaluator 1: Queue-based Evaluator



Could result in early termination!

# Leveraging Policy Similarity

• The Queue-based evaluator suffers from sample inefficiency.

$$(s, a_1) \qquad (s, a_1, r, s') \\ (s, a_2) \qquad (s, a_2, r, s'), (s, a_2, r, s'), \dots, (s, a_2, r, s')$$

If a<sub>1</sub> is ever sampled, Queue-based must terminate in the next iteration.
If we know the sampling distribution, we can do a lot better!



**Revealed randomness** 

# Evaluator 2: Per State Rejection Sampling (PSRS)



# Evaluator 3: Per Episode Rejection Sampling (PERS)



# Summary of Evaluators

- Queue-based
  - Keep a queue for all (s,a) pairs and store (r,s')
  - ⊖ Data inefficiency
- Per State Rejection Sampling
  - <sup>©</sup> Use rejection sampling to sample transitions from dataset
  - ☺ Assumes known state space
- Per Episode Rejection Sampling
  - Eliminate reliance on known and discrete state by sampling entire episodes
  - ☺ Could potentially discard many samples if episodes are long

- ✓ Why we need offline evaluation
  - ☑ What is an evaluator?
  - ☑ Why the obvious evaluators don't work
- ✓ Three proposed evaluation approaches in this work
- Properties of an ideal evaluator.
  - Do the proposed evaluators have these properties?
- □ Evaluating the evaluators: empirical results

# 6 Properties Of An Ideal Evaluator

- 1. (s,a,r,s') tuples provided to algorithm have the same distribution as the true MDP.
   Queue VPSRS VPERS V
- High sample efficiency. "domain dependent"
- Evaluator returns unbiased performance estimates.
   Queue PSRS PERS
   PERS variant

- Evaluator can use data from an unknown sampling distribution.
   Queue 
   PSRS 
   PERS
   PERS
- Does not assume environment is a discrete MDP.

6. Computationally efficient.Queue PSRS PERS ?

#### $\square$ Why we need offline evaluation

- ✓ What is an evaluator?
- Why the obvious evaluators don't work
- ✓ Three proposed evaluation approaches in this work
- Properties of an ideal evaluator
  - ☑ Do the proposed evaluators have these properties?
  - **Evaluating the evaluators: empirical results**

#### Experiment 1: Six Arms

- Accuracy of PSRS vs. a model-based approach
- Model-based approach uses dataset to build MLE model.

| Learning algorithm         | Posterior Sampling<br>Reinforcement Learning<br>(PSRL), 10 posterior samples |
|----------------------------|------------------------------------------------------------------------------|
| Dataset                    | 100 datasets of 100 samples                                                  |
| Sampling distribution      | Uniform                                                                      |
| Performance estimate       | Cumulative reward                                                            |
| Number of runs per dataset | 10                                                                           |



SixArms

#### PSRS vs Model-based on Six Arms



# Experiment 2: Treefrog Treasure

• Evaluating sample efficiency

| Learning algorithm         | Posterior Sampling<br>Reinforcement Learning<br>(PSRL) |
|----------------------------|--------------------------------------------------------|
| Dataset                    | Episodes of 11,550 players                             |
| Sampling distribution      | Semi-uniform                                           |
| Number of runs per dataset | 100                                                    |
| Horizon                    | 3 time steps                                           |



# Performance of Evaluators on Treefrog Treasure



1 PSRL posterior sample

10 PSRL posterior samples (more revealed randomness)

# Quick Thoughts On The Evaluation

- Why did they choose these particular environments?
- Why were Queue-based and PERS omitted from the Six Arms experiment?
- Why didn't they test fixed policy evaluators?
- Why didn't they test importance sampling-based approaches?



# Conclusion







