
Presentation by Revan MacQueen



Offline Evaluation of Online RL Algorithms

❑ Why we need offline evaluation

❑ What is an evaluator?

❑ Why the obvious evaluators don’t work

❑ Three proposed evaluation approaches

❑ Properties of an ideal evaluator

❑ Do the proposed evaluators have these properties?

❑ Evaluating the evaluators: empirical results



We want to use RL in the real 
world

https://healthtechmagazine.net/article/2020/07/3-trends-will-influence-healthcare-staff-return-work
https://wp.nyu.edu/dispatch/2020/02/10/the-impact-of-online-education-in-academics/
https://www.theverge.com/2020/1/17/21070620/cruise-california-disengagement-report-self-driving-car

https://healthtechmagazine.net/article/2020/07/3-trends-will-influence-healthcare-staff-return-work
https://wp.nyu.edu/dispatch/2020/02/10/the-impact-of-online-education-in-academics/
https://www.theverge.com/2020/1/17/21070620/cruise-california-disengagement-report-self-driving-car


The Real World is Tricky

● Many applications are high risk.
● It’s oftentimes computationally infeasible to try out more than 

one algorithm.
● Need many runs to try different hyperparameter settings.

● Ideally, we want to test learning algorithms out on real world 
data prior to deployment. 

● We need an evaluator!

https://www.amazon.ca/Crash-Cartoon-Sticker-Decal-Design/dp/B017CZG3UG



Evaluation Overview



How should we create an evaluator?

Evaluate fixed 
policy

Build a model
Importance 

sampling

•Want to deploy a learning 
algorithm

•Can’t use a train-test split 
of the data. 

•Error accumulates at least 
quadratically with evaluation 
length (Ross, Gordon and 
Bagnell 2011).

•In complex problems, its 
unclear how to build such a 
model.

•Variance is unusably high if 
algorithm is evaluated for 
hundreds of time steps (Dudík
et al. 2014).



Offline Evaluation of Online RL Algorithms

Why we need offline evaluation

What is an evaluator?

Why the obvious evaluators don’t work

❑ Three proposed evaluation approaches in this work

❑ Properties of an ideal evaluator

❑ Do the proposed evaluators have these properties?

❑ Evaluating the evaluators: empirical results



Evaluator 1: Queue-based Evaluator

Learning 
Algorithm

(𝑠𝑖 , 𝑎1 ) 𝑅𝑎𝑛𝑑𝑜𝑚𝑂𝑟𝑑𝑒𝑟( 𝑠𝑖 , 𝑎1 ,𝑟, 𝑠
′ ∈ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 )

(𝑠𝑖 , 𝑎2 ) 𝑅𝑎𝑛𝑑𝑜𝑚𝑂𝑟𝑑𝑒𝑟( 𝑠𝑖 , 𝑎2 , 𝑟, 𝑠
′ ∈ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡)

…

(𝑠𝑑, 𝑎𝑛 ) 𝑅𝑎𝑛𝑑𝑜𝑚𝑂𝑟𝑑𝑒𝑟( 𝑠𝑑 , 𝑎𝑛 , 𝑟, 𝑠
′ ∈ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 )

𝜋𝑏(𝑠𝑖)

𝑠𝑖 , 𝑎1 , 𝑟, 𝑠
′

Produce policy

Sample 𝑎~𝜋𝑏(𝑠𝑖)

Index (𝑠𝑖 , 𝑎1)

Potential Problems?
• The state action space could be very large 

compared to the dataset size.
• Could result in early termination!

Termination: when any queue 
empties



Leveraging Policy Similarity

● The Queue-based evaluator suffers from sample inefficiency.

● If 𝑎1is ever sampled, Queue-based must terminate in the next iteration.
● If we know the sampling distribution, we can do a lot better!

(𝑠, 𝑎1 ) (𝑠,𝑎1 , 𝑟, 𝑠
′)

(𝑠, 𝑎2 ) 𝑠, 𝑎2 , 𝑟, 𝑠
′ , (𝑠, 𝑎2 , 𝑟, 𝑠

′), …, (𝑠,𝑎2 , 𝑟, 𝑠
′)

What if the learned policy is the 
same as the sampling 
distribution?

Potentially all the 
data can be used!

Revealed randomness



Evaluator 2: Per State Rejection Sampling (PSRS) 

Learning 
Algorithm

Rejection 
Sampler

𝑠1 𝑅𝑎𝑛𝑑𝑜𝑚𝑂𝑟𝑑𝑒𝑟( 𝑠1 , 𝑎𝑖 , 𝑟, 𝑠
′ ∈ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 )

𝑠2 𝑅𝑎𝑛𝑑𝑜𝑚𝑂𝑟𝑑𝑒𝑟( 𝑠2 , 𝑎𝑖 , 𝑟, 𝑠
′ ∈ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡)

…

𝑠𝑑 𝑅𝑎𝑛𝑑𝑜𝑚𝑂𝑟𝑑𝑒𝑟( 𝑠3 , 𝑎𝑖 , 𝑟, 𝑠
′ ∈ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡)

𝜋𝑏
Dataset

Sampling
distribution

Accept: 𝑠𝑖,𝑎𝑖, 𝑟, 𝑠
′ ∶ 𝑎𝑖 ~ 𝜋𝑏

𝑠𝑖

𝑠𝑖,𝑎𝑖, 𝑟, 𝑠
′

𝑎𝑖 ~𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

Potential 
Problems?
• Assumes 

known discrete 
state space

Reject: new sample



Evaluator 3: Per Episode Rejection Sampling (PERS) 

Learning 
Algorithm

Rejection 
Sampler

𝜋𝑏
Dataset

Sampling Distribution, 
Episode 

Accept:
𝑜, 𝑎, 𝑟 ∶ 𝑎 ~ 𝜋𝑏

Reject: 
Undo all changes this 
episode, reset

Potential Problems?
• Could potentially discard many 

samples if episodes are long



Summary of Evaluators

● Queue-based

Keep a queue for all (s,a) pairs and store (r,s’) 

Data inefficiency

● Per State Rejection Sampling

Use rejection sampling to sample transitions from dataset 

Assumes known state space

● Per Episode Rejection Sampling

Eliminate reliance on known and discrete state by sampling entire episodes

Could potentially discard many samples if episodes are long



Offline Evaluation of Online RL Algorithms

Why we need offline evaluation

What is an evaluator?

Why the obvious evaluators don’t work

Three proposed evaluation approaches in this work

❑ Properties of an ideal evaluator.

❑ Do the proposed evaluators have these properties?

❑ Evaluating the evaluators: empirical results



6 Properties Of An Ideal Evaluator

1. (s,a,r,s’) tuples provided to 
algorithm have the same 
distribution as the true MDP.

2. High sample efficiency.

3. Evaluator returns unbiased 
performance estimates.

4. Evaluator can use data from 
an unknown sampling 
distribution.

5. Does not assume 
environment is a discrete 
MDP.

6. Computationally efficient. 

Queue  PSRS PERS 

“domain dependent”

Queue  PSRS PERS 

Queue  PSRS PERS 

Queue  PSRS PERS 

Queue  PSRS PERS  ? PERS 
variant 



Offline Evaluation of Online RL Algorithms

Why we need offline evaluation

What is an evaluator?

Why the obvious evaluators don’t work

Three proposed evaluation approaches in this work

Properties of an ideal evaluator

Do the proposed evaluators have these properties?

❑ Evaluating the evaluators: empirical results



Experiment 1: Six Arms

● Accuracy of PSRS vs. a model-based approach 
● Model-based approach uses dataset to build 

MLE model.

Learning algorithm Posterior Sampling 
Reinforcement Learning 
(PSRL), 10 posterior samples

Dataset 100 datasets of 100 samples 

Sampling distribution Uniform

Performance estimate Cumulative reward 

Number of runs per dataset 10



PSRS vs Model-based on Six Arms

• 1000 runs
• MSE is over estimated 

return vs true return on 
environment



Experiment 2: Treefrog Treasure

● Evaluating sample efficiency

Learning algorithm Posterior Sampling 
Reinforcement Learning 
(PSRL)

Dataset Episodes of 11,550 players 

Sampling distribution Semi-uniform

Number of runs per dataset 100

Horizon 3 time steps



Performance of Evaluators on Treefrog Treasure

1 PSRL posterior sample 10 PSRL posterior samples
(more revealed randomness)



Quick Thoughts On The Evaluation

● Why did they choose these particular environments?
● Why were Queue-based and PERS omitted from the Six Arms 

experiment?
● Why didn’t they test fixed policy evaluators?
● Why didn’t they test importance sampling-based approaches?



Conclusion


