Deep Recurrent Q-Learning for Partially Observable MDPs

Matthew Hausknecht and Peter Stone

AAAI Fall Symposium on Sequential Decision Making for Intelligent Agents (AAAI-SDMIA15)

Why Do We Need Recurrency?

Image retrieved from: link

Why Do We Need Recurrency?

Image retrieved from: link

Why Do We Need Recurrency?

Image retrieved from: link

Outline

- 1. Why use Recurrency?
- 2. MDPs and POMDPs
- 3. Deep Q-Learning
- 4. Putting the R in DRQN
- 5. Atari Experiments
- 6. Experiment Review
- 7. Conclusion

MDPs and POMDPs

Markov Decision Process

- Agent receives state **s**
- **s** is the true system state

Partially Observable Markov Decision Process

- Agent receives observation o
- **o** only partial description of system state

Recurrency helps to "narrow the gap" between Q(s,a) and Q(o,a)

Q-Learning

Learn

Q(s,a)

$$\label{eq:Using} \begin{split} & \text{Using} \\ & Q(s,a) := Q(s,a) + \alpha \big(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \big) \end{split}$$

Deep Q-Learning

Learn

 $Q(s, a | \theta_i)$

Using

$$L(s, a|\theta_i) = \left(r + \gamma \max_{a'} Q(s', a'|\theta_i) - Q(s, a|\theta_i)\right)^2$$
$$\theta_{i+1} = \theta_i + \alpha \nabla_{\theta} L(\theta_i)$$

Putting the R in DRQN

An unrolled recurrent neural network.

Putting the R in DRQN

Bootstrapped Random Updates

- Sample sequences of length k
- Hidden state zeroed at start of update

Outline

- 1. Why use RNNs?
- 2. MDPs and POMDPs
- 3. Deep Q-Learning
- 4. Putting the R in DRQN
- 5. Atari Experiments
- 6. Experiment Review
- 7. Conclusion

Questions?

Results

Flickering	${\sf DRQN}{\pm}std$	$\mathrm{DQN} \pm std$
Asteroids	$1032 (\pm 410)$	$1010 (\pm 535)$
Beam Rider	$618 (\pm 115)$	1685.6 (±875)
Bowling	$65.5(\pm 13)$	57.3 (±8)
Centipede	$4319.2(\pm 4378)$	$5268.1 (\pm 2052)$
Chopper Cmd	$1330 (\pm 294)$	$1450 (\pm 787.8)$
Double Dunk	$-14 (\pm 2.5)$	$-16.2(\pm 2.6)$
Frostbite	$414(\pm 494)$	$436 (\pm 462.5)$
Ice Hockey	$-5.4(\pm 2.7)$	$-4.2(\pm 1.5)$
Ms. Pacman	$1739 (\pm 942)$	$1824 (\pm 490)$
Pong	$12.1 (\pm 2.2)$	$-9.9(\pm 3.3)$

Standard Atari

Standard Atari Results

	${\rm DRQN} \pm std$	DQN	$1\pm std$
Game		Ours	Mnih et al.
Asteroids	$1020 (\pm 312)$	$1070 (\pm 345)$	$1629 (\pm 542)$
Beam Rider	$3269 (\pm 1167)$	6923 (±1027)	$6846 (\pm 1619)$
Bowling	$62 (\pm 5.9)$	$72(\pm 11)$	$42 (\pm 88)$
Centipede	$3534(\pm 1601)$	$3653 (\pm 1903)$	$8309(\pm 5237)$
Chopper Cmd	$2070(\pm 875)$	$1460 (\pm 976)$	$6687 (\pm 2916)$
Double Dunk	-2 (±7.8)	$-10(\pm 3.5)$	$-18.1 (\pm 2.6)$
Frostbite	2875 (±535)	$519(\pm 363)$	$328.3 (\pm 250.5)$
Ice Hockey	$-4.4(\pm 1.6)$	$-3.5(\pm 3.5)$	$-1.6(\pm 2.5)$
Ms. Pacman	$2048(\pm 653)$	$2363(\pm 735)$	$2311 (\pm 525)$

MDP to POMDP Generalization

Benjamini-Hochberg Procedure

Problem: Multiple hypothesis testing can result in false positives

Solution: Adjust p-values so that the % of false positives is controlled

B-H with threshold of 0.05 means that 5% of significant results are false positives

Experiment Review

Good	Needs Improvement
 Agents evaluated offline at intervals as recommended in [1] Mostly small adjustments from DQN paper BH procedure to control false positive rate 	 Individual t-tests assume normality Compare against original DQN results but make modifications Hyperparameter selection not explained Ambiguous experiment details Missing error bars Some conclusions seem unjustified

Conclusion

