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Abstract
In this article we introduce the Arcade Learning Environment (ALE): both a chal-

lenge problem and a platform and methodology for evaluating the development of general,
domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600
game environments, each one di↵erent, interesting, and designed to be a challenge for
human players. ALE presents significant research challenges for reinforcement learning,
model learning, model-based planning, imitation learning, transfer learning, and intrinsic
motivation. Most importantly, it provides a rigorous testbed for evaluating and compar-
ing approaches to these problems. We illustrate the promise of ALE by developing and
benchmarking domain-independent agents designed using well-established AI techniques
for both reinforcement learning and planning. In doing so, we also propose an evaluation
methodology made possible by ALE, reporting empirical results on over 55 di↵erent games.
All of the software, including the benchmark agents, is publicly available.

1. Introduction

A longstanding goal of artificial intelligence is the development of algorithms capable of
general competency in a variety of tasks and domains without the need for domain-specific
tailoring. To this end, di↵erent theoretical frameworks have been proposed to formalize the
notion of “big” artificial intelligence (e.g., Russell, 1997; Hutter, 2005; Legg, 2008). Similar
ideas have been developed around the theme of lifelong learning : learning a reusable, high-
level understanding of the world from raw sensory data (Thrun & Mitchell, 1995; Pierce &
Kuipers, 1997; Stober & Kuipers, 2008; Sutton et al., 2011). The growing interest in com-
petitions such as the General Game Playing competition (Genesereth, Love, & Pell, 2005),
Reinforcement Learning competition (Whiteson, Tanner, & White, 2010), and the Inter-
national Planning competition (Coles et al., 2012) also suggests the artificial intelligence
community’s desire for the emergence of algorithms that provide general competency.

Designing generally competent agents raises the question of how to best evaluate them.
Empirically evaluating general competency on a handful of parametrized benchmark prob-
lems is, by definition, flawed. Such an evaluation is prone to method overfitting (Whiteson,
Tanner, Taylor, & Stone, 2011) and discounts the amount of expert e↵ort necessary to
transfer the algorithm to new domains. Ideally, the algorithm should be compared across

c�2013 AI Access Foundation. All rights reserved.
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The theoryof reinforcement learningprovides anormative account1,
deeply rooted in psychological2 and neuroscientific3 perspectives on
animal behaviour, of how agents may optimize their control of an
environment.Touse reinforcement learning successfully in situations
approaching real-world complexity, however, agents are confronted
with a difficult task: theymust derive efficient representations of the
environment from high-dimensional sensory inputs, and use these
togeneralize past experience tonew situations.Remarkably, humans
andother animals seem to solve this problem throughaharmonious
combinationof reinforcement learningandhierarchical sensorypro-
cessing systems4,5, the former evidenced by a wealth of neural data
revealingnotableparallels between thephasic signals emittedbydopa-
minergic neurons and temporal difference reinforcement learning
algorithms3.While reinforcement learningagentshave achieved some
successes in a variety of domains6–8, their applicabilityhas previously
been limited todomains inwhichuseful features canbehandcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neural networks9–11 to
develop a novel artificial agent, termed a deep Q-network, that can
learnsuccessfulpoliciesdirectly fromhigh-dimensional sensory inputs
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games12. We demon-
strate that the deep Q-network agent, receiving only the pixels and
the game score as inputs, was able to surpass the performance of all
previous algorithms and achieve a level comparable to that of a pro-
fessional humangames tester across a set of 49games,using the same
algorithm, network architecture and hyperparameters. This work
bridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent that is capable of learn-
ing to excel at a diverse array of challenging tasks.
We set out to create a single algorithm that would be able to develop

a wide range of competencies on a varied range of challenging tasks—a
central goal of general artificial intelligence13 that has eluded previous
efforts8,14,15. Toachieve this,wedevelopedanovel agent, adeepQ-network
(DQN), which is able to combine reinforcement learning with a class
of artificial neural network16 known as deep neural networks. Notably,
recent advances in deep neural networks9–11, in which several layers of
nodes are used to build up progressivelymore abstract representations
of the data, havemade it possible for artificial neural networks to learn
concepts such as object categories directly from raw sensory data. We
use one particularly successful architecture, the deep convolutional
network17, which uses hierarchical layers of tiled convolutional filters
tomimic the effects of receptive fields—inspired byHubel andWiesel’s
seminalworkon feedforwardprocessing in early visual cortex18—thereby
exploiting the local spatial correlations present in images, and building
in robustness to natural transformations such as changes of viewpoint
or scale.
We consider tasks in which the agent interacts with an environment

througha sequence of observations, actions and rewards.The goal of the

agent is to select actions in a fashion thatmaximizes cumulative future
reward.More formally, we use a deep convolutional neural network to
approximate the optimal action-value function
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which is themaximum sumof rewards rt discounted by c at each time-
step t, achievable by a behaviour policy p5P(ajs), after making an
observation (s) and taking an action (a) (see Methods)19.
Reinforcement learning is known to be unstable or even to diverge

when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function20. This
instability has several causes: the correlations present in the sequence
of observations, the fact that small updates toQmay significantly change
thepolicy and therefore change thedatadistribution, and the correlations
between the action-values (Q) and the target values rzcmax

a0
Q s

0, a0ð Þ.
We address these instabilities with a novel variant ofQ-learning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay21–23 that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for details). Second,we used
an iterative update that adjusts the action-values (Q) towards target
values that are only periodically updated, thereby reducing correlations
with the target.
While other stablemethods exist for training neural networks in the

reinforcement learning setting, such as neural fittedQ-iteration24, these
methods involve the repeated trainingofnetworksdenovoonhundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function Q(s,a;hi) using the deep
convolutional neural network shown inFig. 1, inwhichhi are theparam-
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences et5 (st,at,rt,st1 1)
at each time-step t in a data set Dt5 {e1,…,et}. During learning, we
apply Q-learning updates, on samples (or minibatches) of experience
(s,a,r,s9),U(D), drawn uniformly at random from the pool of stored
samples. The Q-learning update at iteration i uses the following loss
function:

Li hið Þ~ s,a,r,s0ð Þ*U Dð Þ rzcmax
a0

Q(s0,a0; h{i ){Q s,a; hið Þ
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inwhich c is the discount factor determining the agent’s horizon, hi are
the parameters of the Q-network at iteration i and h{

i
are the network

parameters used to compute the target at iteration i. The target net-
work parameters h{i are only updatedwith theQ-network parameters
(hi) every C steps and are held fixed between individual updates (see
Methods).
To evaluate our DQN agent, we took advantage of the Atari 2600

platform, which offers a diverse array of tasks (n5 49) designed to be

*These authors contributed equally to this work.
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Abstract

The Arcade Learning Environment (ALE) is an evaluation platform that poses the
challenge of building AI agents with general competency across dozens of Atari 2600 games.
It supports a variety of di↵erent problem settings and it has been receiving increasing
attention from the scientific community, leading to some high-profile success stories such as
the much publicized Deep Q-Networks (DQN). In this article we take a big picture look at
how the ALE is being used by the research community. We show how diverse the evaluation
methodologies in the ALE have become with time, and highlight some key concerns when
evaluating agents in the ALE. We use this discussion to present some methodological best
practices and provide new benchmark results using these best practices. To further the
progress in the field, we introduce a new version of the ALE that supports multiple game
modes and provides a form of stochasticity we call sticky actions. We conclude this big
picture look by revisiting challenges posed when the ALE was introduced, summarizing the
state-of-the-art in various problems and highlighting problems that remain open.

1. Introduction

The Arcade Learning Environment (ALE) is both a challenge problem and a platform
for evaluating general competency in artificial intelligence (AI). Originally proposed by
Bellemare, Naddaf, Veness, and Bowling (2013), the ALE makes available dozens of Atari
2600 games for agent evaluation. The agent is expected to do well in as many games
as possible without game-specific information, generally perceiving the world through a
video stream. Atari 2600 games are excellent environments for evaluating AI agents for
three main reasons: 1) they are varied enough to provide multiple di↵erent tasks, requiring
general competence, 2) they are interesting and challenging for humans, and 3) they are
free of experimenter’s bias, having been developed by an independent party.

c�2018 AI Access Foundation. All rights reserved.



“We also show that these algorithms produce 
competitive results when learning policies [on the 
Arcade Learning Environment]”

2015

“We perform most of our experiments using the 
Arcade Learning Environment”2016

“We also ran [algorithm] on the Arcade Learning 
Environment benchmark” 2017

“We evaluated [algorithm] on the Arcade 
Learning Environment”2018

"Atari-57 is a collection of 57 classic [Atari] games. 
The ALE, exposes them as [RL] environments”

2019
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Would it have a perceptible 
impact on results?

What’s the extent of the issue?
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Frame Skip
How do we fare?

Trained Rainbow Agent @ 200M Frames (Castro et al., 2018)

Frame Skip: 4 Frame Skip: 5



Frame Post-Processing
Max-Pool



Frame Post-Processing
Phosphor Blend (Colour Averaging)



Frame Post-Processing
How do we fare?

Trained Rainbow Agent @ 200M Frames (Castro et al., 2018)

Post-Processing: Max-Pool Post-Processing: Phosphor
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Stochasticity
Sticky Actions
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ROM Differences
NTSC

• 60 Hz

• 525 Scanlines

• Wider colour gamut

PAL/SECAM

• 50 Hz

• 625 Scanlines

• Limited colour gamut



Terminal State
Loss of life?

Loss of Life

Number of Lives

End of Game
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Score?

Machado, Bellemare, Talvitie, Veness, Hausknecht, & Bowling

Table 9: DQN results across 60 games. See Appendix B for details.

Game 10M frames 50M frames 100M frames 200M frames

Alien 600.5 (23.6) 1,426.6 (81.6) 1,952.6 (216.0) 2,742.0 (357.5)

Amidar 91.6 (10.5) 414.2 (53.6) 621.6 (92.6) 792.6 (220.4)

Assault 688.9 (16.0) 1,327.5 (83.9) 1,433.9 (126.6) 1,424.6 (106.8)

Asterix†
1,732.6 (314.6) 3,122.6 (96.4) 3,423.4 (213.6) 2,866.8 (1,354.6)

Asteroids 301.4 (14.3) 458.1 (28.5) 458.0 (18.9) 528.5 (37.0)

Atlantis 6,639.4 (208.4) 51,324.4 (8,681.7) 291,134.7 (31,575.2) 232,442.9 (128,678.4)

Bank Heist 32.3 (6.5) 448.2 (104.8) 740.7 (130.6) 760.0 (82.3)

Battle Zone 2,428.3 (200.4) 10,838.4 (1,807.6) 15,048.5 (2,372.0) 20,547.5 (1,843.0)

Beam Rider †
693.9 (111.0) 4,551.5 (849.1) 4,977.2 (292.2) 5,700.5 (362.5)

Berzerk 434.5 (51.2) 457.5 (9.4) 470.0 (24.5) 487.2 (29.9)

Bowling 28.7 (0.8) 29.4 (1.8) 32.8 (3.6) 33.6 (2.7)

Boxing 18.6 (3.8) 71.7 (2.7) 77.9 (0.5) 72.7 (4.9)

Breakout 14.2 (1.2) 75.1 (4.3) 57.9 (14.6) 35.1 (22.6)

Carnival 588.5 (47.0) 2,131.6 (534.3) 4,621.9 (191.0) 4,803.8 (189.0)

Centipede 3,075.2 (381.1) 2,280.0 (184.2) 2,555.2 (195.1) 2,838.9 (225.3)

Chopper Command 841.4 (144.3) 2,104.8 (327.7) 3,288.1 (339.2) 4,399.6 (401.5)

Crazy Climber 43,716.6 (2,571.2) 80,599.6 (4,209.8) 64,807.3 (26,100.0) 78,352.1 (1,967.3)

Defender 2,409.9 (78.6) 2,525.7 (124.0) 2,711.6 (96.8) 2,941.3 (106.2)

Demon Attack 154.8 (11.5) 3,744.6 (688.9) 4,556.5 (947.2) 5,182.0 (778.0)

Double Dunk -20.9 (0.3) -18.4 (1.2) -15.6 (1.6) -8.7 (4.5)

Elevator Action 6.7 (13.3) 4.5 (9.0) 4.7 (9.4) 6.0 (10.4)

Enduro 473.2 (22.3) 578.0 (79.6) 597.4 (153.1) 688.2 (32.4)

Fishing Derby -63.1 (7.8) 7.5 (4.1) 12.2 (1.4) 10.2 (1.9)

Freeway†
13.8 (8.1) 31.7 (0.7) 32.4 (0.3) 33.0 (0.3)

Frostbite 241.8 (30.8) 292.5 (28.8) 274.3 (8.8) 279.6 (13.9)

Gopher 679.6 (35.2) 2,233.7 (123.1) 2,988.8 (514.4) 3,925.5 (521.4)

Gravitar 79.5 (8.0) 109.3 (3.1) 118.5 (22.0) 154.9 (17.7)

H.E.R.O. 1,667.9 (1,107.8) 11,564.0 (3,722.4) 14,684.7 (1,840.6) 18,843.3 (2,234.9)

Ice Hockey -15.1 (0.3) -8.9 (1.7) -4.4 (2.0) -3.8 (4.7)

James Bond 30.7 (6.0) 191.4 (144.9) 517.2 (35.8) 581.0 (21.3)

Journey Escape -2,220.0 (176.1) -2,409.7 (341.2) -2,959.0 (383.9) -3,503.0 (488.5)

Kangaroo 298.6 (56.1) 8,878.8 (2,886.1) 12,846.9 (688.3) 12,291.7 (1,115.9)

Krull 4,424.7 (492.7) 6,035.6 (248.6) 6,589.8 (264.4) 6,416.0 (128.5)

Kung-Fu Master 9,468.1 (1,975.9) 17,537.4 (1,128.8) 17,772.3 (3,423.3) 16,472.7 (2,892.7)

Montezuma’s Revenge 0.2 (0.4) 0.2 (0.4) 0.0 (0.0) 0.0 (0.0)

Ms. Pac-Man 1,675.5 (41.9) 2,626.1 (139.8) 2,964.9 (100.8) 3,116.2 (141.2)

Name This Game 2,265.6 (171.0) 4,105.4 (932.3) 4,105.6 (653.5) 3,925.2 (660.2)

Phoenix 1,501.2 (278.1) 3,174.0 (543.5) 2,607.1 (644.1) 2,831.0 (581.0)

Pitfall! -24.9 (14.8) -28.2 (13.0) -23.3 (9.6) -21.4 (3.2)

Pong -15.9 (1.0) 12.2 (1.0) 15.2 (0.7) 15.1 (1.0)

Pooyan 2,278.9 (273.7) 3,528.9 (256.3) 3,387.8 (182.8) 3,700.4 (349.5)

Private Eye 81.6 (15.6) 60.4 (92.4) 1,447.4 (2,567.9) 3,967.5 (5,540.6)

Q*bert 674.7 (53.6) 3,142.1 (1,238.7) 7,585.4 (2,787.4) 9,875.5 (1,385.3)

River Raid 3,166.2 (125.2) 8,738.1 (500.0) 10,733.1 (229.9) 10,210.4 (435.0)

Road Runner 14,742.2 (1,553.4) 37,271.7 (1,234.5) 41,918.4 (1,762.5) 42,028.3 (1,492.0)

Robotank 4.1 (0.3) 28.4 (1.4) 38.0 (1.6) 58.0 (6.4)

Seaquest† 311.5 (36.9) 1,430.8 (162.3) 1,573.4 (561.4) 1,485.7 (740.8)

Skiing -20,837.5 (1,550.2) -17,545.5 (4,041.5) -13,365.1 (800.7) -12,446.6 (1,257.9)

Solaris 1,030.2 (40.3) 977.7 (112.5) 783.4 (55.3) 1,210.0 (148.3)

Space Invaders †
211.6 (14.8) 686.6 (37.0) 787.2 (173.3) 823.6 (335.0)

Star Gunner 603.0 (28.0) 1,492.3 (79.7) 11,590.5 (4,658.9) 39,269.9 (5,298.8)

Tennis -23.8 (0.1) -23.9 (0.1) -23.9 (0.0) -23.9 (0.0)

Time Pilot 1,078.8 (60.3) 1,068.1 (138.8) 1,330.7 (177.1) 2,061.8 (228.8)

Tutankham 56.5 (10.0) 64.9 (12.6) 65.1 (11.9) 60.0 (12.7)

Up and Down 4,378.4 (172.5) 6,718.3 (671.2) 5,962.8 (618.7) 4,750.7 (1,007.5)

Venture 24.4 (46.9) 21.4 (15.1) 4.4 (5.4) 3.2 (4.7)

Video Pinball 4,009.3 (271.9) 7,817.0 (1,884.4) 16,626.2 (3,740.6) 15,398.5 (2,126.1)

Wizard of Wor 184.2 (22.0) 1,377.4 (71.0) 1,440.6 (237.3) 2,231.1 (820.8)

Yar’s Revenge 7,261.4 (777.1) 10,344.8 (452.4) 10,312.3 (528.9) 13,073.4 (1,961.8)

Zaxxon 53.5 (51.0) 672.3 (748.5) 1,638.2 (784.0) 3,852.1 (1,120.7)

38

•Hard to analyze for those unfamiliar with 
the benchmark.

•Return distributions can be multimodal 
leading to large variance with few seeds.

•Naive baselines can help to ground 
results, especially on obscure games.
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100 Million Frames

100 Million Frames

2 Billion Frames

Computation
# Frames

Citing results using 
different methodologies

Table 3: Performance of the proposed algorithm, DQNMMC
e +SR, compared to various agents on the “hard exploration” subset

of Atari 2600 games. The DQN results reported are from Machado et al. (2018a) while the DQNMMC
CTS , DQNMMC

PIXELCNN and
RND results were obtained through personal communication with the authors of the corresponding papers. Burda et al. did not
evaluate RND in FREEWAY. When available, standard deviation is reported between parentheses. See text for details.

DQN DQNMMC
e DQNMMC

CTS DQNMMC
PIXELCNN RND DQNMMC

e +SR
FREEWAY 32.4 (0.3) 29.5 (0.1) 29.2 29.4 - - 29.4 (0.1)
GRAVITAR 118.5 (22.0) 1078.3 (254.1) 199.8 275.4 790.0 (122.9) 457.4 (120.3)
MONT. REV. 0.0 (0.0) 0.0 (0.0) 2941.9 1671.7 524.8 (314.0) 1395.4 (1121.8)
PRIVATE EYE 1447.4 (2,567.9) 113.4 (42.3) 32.8 14386.0 61.3 (53.7) 104.4 (50.4)
SOLARIS 783.4 (55.3) 2244.6 (378.8) 1147.1 2279.4 1270.3 (291.0) 1890.1 (163.1)
VENTURE 4.4 (5.4) 1220.1 (51.0) 0.0 856.2 953.7 (167.3) 1348.5 (56.5)

A complete description of the network architecture is
available in Figure 4, which is at the end of the paper to
allow the reader to first focus on the main concepts of the
proposed idea. We initialize our network the same way Oh
et al. (2015) does. We use Xavier initialization (Glorot and
Bengio 2010) in all layers except the fully connected layers
around the element-wise multiplication denoted by⊗, which
are initialized uniformly with values between −0.1 and 0.1.

5 Evaluation of Exploration in Deep RL
We evaluated our algorithm on the Arcade Learning En-
vironment (Bellemare et al. 2013). Following Bellemare
et al.’s (2016) taxonomy, we focused on the Atari 2600
games with sparse rewards that pose hard exploration prob-
lems. They are: FREEWAY, GRAVITAR, MONTEZUMA’S
REVENGE, PRIVATE EYE, SOLARIS, and VENTURE.3

We used the evaluation protocol proposed by Machado
et al. (2018a). The reported results are the average over 10
seeds after 100 million frames. We evaluated our agents in
the stochastic setting (sticky actions, ς = 0.25) using a
frame skip of 5 with the full action set (|A| = 18). The agent
learns from raw pixels i.e., it uses the game screen as input.

Our results were obtained with the algorithm described in
Section 4. We set β = 0.05 after a rough sweep over val-
ues in the game MONTEZUMA’S REVENGE. We annealed ε
in DQN’s ε-greedy exploration over the first million steps,
starting at 1.0 and stopping at 0.1 as done by Bellemare et
al. (2016). We trained the network with RMSprop with a
step-size of 0.00025, an ε value of 0.01, and a decay of 0.95,
which are the standard parameters for training DQN (Mnih
et al. 2015). The discount factor, γ, is set to 0.99, and
wTD = 1, wSR = 1000, wRecons = 0.001. The weights wTD,
wSR, and wRecons were set so that the loss functions would be
roughly at the same scale. All other parameters are the same
as those used by Mnih et al. (2015) and Oh et al. (2015).

Overall Performance and Baselines
Table 3 summarizes the results after 100 million frames.
The performance of other algorithms is also provided for
reference. Notice we are reporting learning performance
for all algorithms instead of the maximum scores achieved

3The code used to generate the reported results is available at:
https://github.com/mcmachado/count based exploration sr/tree/
master/function approximation.

by the algorithm. We use the superscript MMC to distin-
guish between the algorithms that use MMC from those
that do not. When comparing our algorithm, DQNMMC

e +SR,
to DQN we can see how much our approach improves
over the most traditional baseline. By comparing our algo-
rithm’s performance to DQNMMC

CTS (Bellemare et al. 2016)
and DQNMMC

PIXELCNN (Ostrovski et al. 2017) we compare our
algorithm to established baselines for exploration that are
closer to our method. By comparing our algorithm’s per-
formance to Random Network Distillation (RND; Burda et
al. 2019) we compare our algorithm to the most recent pa-
per in the field with state-of-the-art performance. Finally, we
also evaluate the impact of the proposed exploration bonus
by comparing our algorithm to DQNMMC

e , which uses the
same number of parameters our network uses (i.e., filter
sizes, stride, and number of nodes), but without the addi-
tional modules (next state prediction and successor repre-
sentation) and without the intrinsic reward bonus. We do this
by setting wSR = wRecons = β = 0.

We can clearly see that our algorithm achieves scores
much higher than those achieved by DQN, which strug-
gles in games that pose hard exploration problems. When
comparing our algorithm to DQNMMC

CTS and DQNMMC
PIXELCNN

we observe that, on average, DQNMMC
e +SR at least matches

the performance of these algorithms while being simpler
by not requiring a density model. Instead, our algorithm
requires the SR, which is domain-independent as it is al-
ready defined for every problem since it is a component of
the value function estimates, as discussed in Section 2. Fi-
nally, DQNMMC

e +SR also outperforms RND (Burda et al.
2019) when it is trained for 100 million frames.4 Impor-
tantly, RND, when trained for 2 billion frames, is currently
considered to be the state-of-the-art approach for exploration
in Atari 2600 games. Recently Taiga et al. (2019) evaluated
several exploration algorithms, including those we use as
baselines, and they have shown that, in these games, their
performance at 100 million frames is predictive of their per-
formance at one billion frames.

Finally, the comparison between DQNMMC
e +SR and

DQNMMC
e shows that the provided exploration bonus has a

big impact in the game MONTEZUMA’S REVENGE, which is

4DQNMMC
e +SR outperforms DQNMMC

CTS in five out of six
games, it outperforms RND in four out of five games, and its per-
formance is comparable to DQNMMC

PIXELCNN’s performance.

5130

schemes etc. This provides an ablation of the prediction problem defining the exploration bonus,
while also being representative of a class of prior work using forward dynamics error. Our expectation
was that these methods should be fairly similar except where the dynamics-based agent is able to
exploit non-determinism in the environment to get intrinsic reward.

Figure 7 shows that dynamics-based exploration performs significantly worse than RND with the
same CNN policy on Montezuma’s Revenge, PrivateEye, and Solaris, and performs similarly on
Venture, Pitfall, and Gravitar. By analyzing agent’s behavior at convergence we notice that in
Montezuma’s Revenge the agent oscillates between two rooms. This leads to an irreducibly high
prediction error, as the non-determinism of sticky actions makes it impossible to know whether, once
the agent is close to crossing a room boundary, making one extra step will result in it staying in
the same room, or crossing to the next one. This is a manifestation of the ‘noisy TV’ problem, or
aleatoric uncertainty discussed in Section 2.2.1. Similar behavior emerges in PrivateEye and Pitfall!.
In Table 1 the final training performance for each algorithm is listed, alongside the state of the art
from previous work and average human performance.

Gravitar Montezuma’s Revenge Pitfall! PrivateEye Solaris Venture
RND 3,906 8,152 -3 8,666 3,282 1,859
PPO 3,426 2,497 0 105 3,387 0

Dynamics 3,371 400 0 33 3,246 1,712
SOTA 2,2091 3,7002 0 15,8062 12,3801 1,8133

Avg. Human 3,351 4,753 6,464 69,571 12,327 1,188

Table 1: Comparison to baselines results. Final mean performance for various methods. State of
the art results taken from: [1] (Fortunato et al., 2017) [2] (Bellemare et al., 2016) [3] (Horgan et al.,
2018)

3.7 QUALITATIVE ANALYSIS: DANCING WITH SKULLS

By observing the RND agent, we notice that frequently once it obtains all the extrinsic rewards that
it knows how to obtain reliably (as judged by the extrinsic value function), the agent settles into a
pattern of behavior where it keeps interacting with potentially dangerous objects. For instance in
Montezuma’s Revenge the agent jumps back and forth over a moving skull, moves in between laser
gates, and gets on and off disappearing bridges. We also observe similar behavior in Pitfall!. It might
be related to the very fact that such dangerous states are difficult to achieve, and hence are rarely
represented in agent’s past experience compared to safer states.

4 RELATED WORK

Exploration. Count-based exploration bonuses are a natural and effective way to do exploration
(Strehl & Littman, 2008) and a lot of work has studied how to tractably generalize count bonuses to
large state spaces (Bellemare et al., 2016; Fu et al., 2017; Ostrovski et al., 2017; Tang et al., 2017;
Machado et al., 2018; Fox et al., 2018).

Another class of exploration methods rely on errors in predicting dynamics (Schmidhuber, 1991b;
Stadie et al., 2015; Achiam & Sastry, 2017; Pathak et al., 2017; Burda et al., 2018). As discussed in
Section 2.2, these methods are subject to the ‘noisy TV’ problem in stochastic or partially-observable
environments. This has motivated work on exploration via quantification of uncertainty (Still &
Precup, 2012; Houthooft et al., 2016) or prediction improvement measures (Schmidhuber, 1991a;
Oudeyer et al., 2007; Lopes et al., 2012; Achiam & Sastry, 2017).

Other methods of exploration include adversarial self-play (Sukhbaatar et al., 2018), maximizing
empowerment (Gregor et al., 2017), parameter noise (Plappert et al., 2017; Fortunato et al., 2017),
identifying diverse policies (Eysenbach et al., 2018; Achiam et al., 2018), and using ensembles of
value functions (Osband et al., 2018; 2016; Chen et al., 2017).

Montezuma’s Revenge. Early neural-network based reinforcement learning algorithms that were
successful on a significant portion of Atari games (Mnih et al., 2015; 2016; Hessel et al., 2017) failed
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50M Frames 1-actor: ~ 24 hours

200M Frames 1-actor: ~ 4 days

2B Frames 1-actor: ~ 40 days



Computation
# Seeds

Algorithm # Seeds

DQN —

Double DQN 6

Prioritized Replay 8

Duelling DQN —

PPO 3

TRPO 1

A3C 5

ACER —

RAINBOW —

•Computation is expensive

•The entire benchmark is massive…

•Do we need results on every game?



Moving Forwards



Reducing Computation
3-bit Color

Pong Space Invaders Freeway



Reducing Fragmentation
ale-py

•Soon you can use upstream ALE in Gym!

•This will now follow all of the best 
practices!

•No need to compile the ALE from scratch!

•ROM checksum validation!



Accessible Visualizations
ale-ts



Takeaways
• Hyperparameters, hyperparameters, hyperparameters. 

Report ALL environment hyperparameters.


• Benchmarks evolve. Fragmentation can become an issue.


• Take caution when directly citing results. What 
methodologies were used? If possible, gather data yourself.


• Be wary of results with few seeds, there’s well known 
games that have multimodal return distributions.



Thanks!


