Arcade Learning Environment Challenges With Empirical Evaluation

Jesse Farebrother

CMPUT 607

Outline

- Background
- Evolving Methodologies
- Measuring Performance
- Moving Forwards

The Arcade Learning Environment: An Evaluation Platform for General Agents

Marc G. Bellemare University of Alberta, Edmonton, Alberta, Canada

Yavar Naddaf Empirical Results Inc., Vancouver, British Columbia, Canada

Joel Veness Michael Bowling

University of Alberta, Edmonton, Alberta, Canada

MG17@CS.UALBERTA.CA

YAVAR@EMPIRICALRESULTS.CA

VENESS@CS.UALBERTA.CA BOWLING@CS.UALBERTA.CA

Human-level control through deep reinforcement learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

Evolving Methodologies

Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents

Marlos C. Machado University of Alberta, Edmonton, Canada

Marc G. Bellemare Google Brain, Montréal, Canada

Erik Talvitie Franklin & Marshall College, Lancaster, USA

Joel Veness DeepMind, London, United Kingdom

Matthew Hausknecht Microsoft Research, Redmond, USA

Michael Bowling University of Alberta, Edmonton, Canada DeepMind, Edmonton, Canada

MACHADO@UALBERTA.CA

BELLEMARE@GOOGLE.COM

ERIK.TALVITIE@FANDM.EDU

AIXI@GOOGLE.COM

MATTHEW.HAUSKNECHT@MICROSOFT.COM

MBOWLING@UALBERTA.CA

"We also show that these algorithms produce competitive results when learning policies [on the 2015 Arcade Learning Environment]" "We perform most of our experiments using the 2016 Arcade Learning Environment" "We also ran [algorithm] on the Arcade Learning **Environment** benchmark" "We evaluated [algorithm] on the Arcade Learning Environment"

"Atari-57 is a collection of 57 classic [Atari] games. 2019 The ALE, exposes them as [RL] environments"

local alewrap = require"alewrap"

}

local env = alewrap.GameEnvironment{
game_path = "Pong.bin"

import gym

env = gym.make("Pong-v0")

import gym

env = gym.make("ale-py:Pong-v5")

Behind The Scenes

import gym

env = gym.make("ale-py:Pong-v5")

Frame Skip	5
Stochasticity	Repeat Actions
Frame Post- Processing	Max-Pool
All-Actions	TRUE
Deterministic	TRUE
Distribution	Arcade Learning Environment

local alewrap = require"alewrap"

```
local env = alewrap.GameEnvironment{
game_path = "Pong.bin"
```

}

Frame Skip	4
Stochasticity	Start State
Frame Post- Processing	Phosphor
All-Actions	FALSE
Deterministic	FALSE
Distribution	DeepMind Xitari

Behind The Scenes

import gym

env = gym.make("ale-py:Pong-v5")

Frame Skip	5
Stochasticity	Repeat Actions
Frame Post- Processing	Max-Pool
All-Actions	TRUE
Deterministic	TRUE
Distribution	Arcade Learning Environment

import gym

env = gym.make("Pong-v0")

Frame Skip	4				
Stochasticity	Repeat Actions				
Frame Post- Processing	Max-Pool				
All-Actions	FALSE				
Deterministic	FALSE				
Distribution	OpenAl atari-py				

Behind The Scenes

import gym

env = gym.make("ale-py:Pong-v5")

Frame Skip	5
Stochasticity	Repeat Actions
Frame Post- Processing	Max-Pool
All-Actions	TRUE
Deterministic	TRUE
Distribution	Arcade Learning Environment

import gym

env = gym.make("Pong-v4")

Frame Skip	Uniform(2, 5)
Stochasticity	Frame Skip
Frame Post- Processing	Max-Pool
All-Actions	FALSE
Deterministic	FALSE
Distribution	OpenAl atari-py

What's the extent of the issue?

Would it have a perceptible impact on results?

Trained Rainbow Agent @ 200M Frames (Castro et al., 2018)

Frame Post-Processing Max-Pool

Frame Post-Processing Phosphor Blend (Colour Averaging)

Post-Processing: Max-Pool

Post-Processing: Phosphor

Trained Rainbow Agent @ 200M Frames (Castro et al., 2018)

More Confounders...

Stochasticity **Sticky Actions**

 $A_t = \begin{cases} A_t & \text{w.p. } \varsigma \\ A_{t-1} & \text{w.p. } 1 - \varsigma \end{cases}$ A_{t+2} A_{t+3} A_{t+3} A_{t+4} A

Stochasticity Random Starts

Φ

ROM Differences

NTSC

- 60 Hz
- 525 Scanlines
- Wider colour gamut

- 50 Hz
- 625 Scanlines
- Limited colour gamut

Terminal State Loss of life?

Measuring Performance

Score?

- Hard to analyze for those unfamiliar with the benchmark.
- Return distributions can be multimodal leading to large variance with few seeds.
- Naive baselines can help to ground results, especially on obscure games.

Game	10M fr	ames	50M frames		100M frames		200M frames	
ALIEN	600.5	(23.6)	1,426.6	(81.6)	1,952.6	(216.0)	2,742.0	(357.5)
Amidar	91.6	(10.5)	414.2	(53.6)	621.6	(92.6)	792.6	(220.4)
Assault	688.9	(16.0)	1.327.5	(83.9)	1.433.9	(126.6)	1.424.6	(106.8)
Asterix [†]	1.732.6	(314.6)	3.122.6	(96.4)	3.423.4	(213.6)	2.866.8	(1.354.6)
Asteroids	301.4	(14.3)	458.1	(28.5)	458.0	(18.9)	528.5	(37.0)
ATLANTIS	6.639.4	(208.4)	51.324.4	(8.681.7)	291.134.7	(31.575.2)	232.442.9	(128.678.4)
BANK HEIST	32.3	(6.5)	448.2	(104.8)	740.7	(130.6)	760.0	(82.3)
BATTLE ZONE	2.428.3	(200.4)	10.838.4	(1.807.6)	15.048.5	(2.372.0)	20.547.5	(1.843.0)
BEAM BIDER [†]	693.9	(1110)	4 551 5	(1,00110)	49772	(292.2)	5 700 5	(362.5)
BERZERK	434.5	(51.2)	457.5	(94)	470.0	(232.2) (24.5)	487.2	(29.9)
BOWLING		(012)	29.4	(1.8)	32.8	(210) (36)	33.6	(20.0) (2.7)
Boxing	18.6	(3.8)	71 7	(1.0) (2.7)	77.9	(0.5)	72.7	(2.1) (4.9)
BREAKOUT	14 2	(0.0) (1.2)	75.1	(4.3)	57.9	(14.6)	35.1	(22.6)
CARNIVAL	588.5	(47.0)	2 131 6	(534.3)	4 621 9	(110)	4 803 8	(189.0)
CENTIPEDE	30752	(381.1)	2 280 0	(184.2)	25552	(191.0) (195.1)	2 838 9	(225.3)
CHOPPER COMMAND	841.4	(144.3)	2 104 8	(327.7)	3,288,1	$(339\ 2)$	4 399 6	(401.5)
CRAZY CLIMBER	43 716 6	(25712)	80 599 6	$(4\ 209\ 8)$	64 807 3	$(26\ 100\ 0)$	78.352.1	(1013) (1.967.3)
DEFENDER	24099	(2,011.2) (78.6)	25257	(1,200.0)	27116	(26,100.0) (96.8)	2 941 3	(1,001.0)
DEMON ATTACK	154.8	(10.0)	3 744 6	(121.0) (688.9)	4 556 5	(947.2)	5 182 0	(778.0)
DOUBLE DUNK	-20.9	(1130) (0.3)	-18.4	(12)	-15.6	(16)	-8.7	(4.5)
ELEVATOR ACTION	67	(13.3)	4 5	(1.2) (9.0)	4 7	(9.4)	6.0	(10.4)
ENDURO	473.2	(13.3) (22.3)	578.0	(79.6)	597.4	(153.1)	688.2	(32.4)
FISHING DEBBY	-63.1	(22.0)	75	(10.0)	12.2	(100.1) (1.4)	10.2	(02.1) (1.9)
FREEWAY	13.8	(8.1)	31.7	(0.7)	32.4	(0.3)	33.0	(0.3)
FROSTRITE	241.8	(30.8)	292.5	(28.8)	274.3	(8.8)	279.6	(0.0) (13.9)
GOPHER	679.6	(35.2)	232.0 2 233 7	(123.0)	2 988 8	(5.0)	3 925 5	(10.5) (521 4)
GRAVITAR	79.5	(30.2)	109.3	(120.1) (3.1)	118.5	(22.0)	154.9	(021.4) (17.7)
HEBO	1 667 9	(0.0) (1 107 8)	11 564 0	(3.1) (3.722.4)	$14\ 684\ 7$	(22.0) (1.840.6)	18 843 3	(2,234,9)
ICE HOCKEY	-15.1	(1,101.0)	-8.9	(0,722.1) (1.7)	-4 4	(1,010.0)	-3.8	(2,201.5) (47)
JAMES BOND	30.7	(0.0)	191.4	(1.1) (144 9)	517.2	(2.0) (35.8)	581.0	(21.3)
JOURNEY ESCAPE	-2 220 0	(176.1)	-2 409 7	(341.2)	-2 959 0	(383.9)	-3 503 0	(21.0) (488.5)
KANGABOO	298.6	(56.1)	8 878 8	(28861)	12,846.9	(688.3)	$12\ 291\ 7$	(100.0)
KRULL	4 424 7	(492.7)	6 035 6	(2,800.1) (248.6)	6 589 8	(264.4)	6 416 0	(1,110.5) (128.5)
KUNG-FU MASTER	9 468 1	(192.7) (1975.9)	$17\ 537\ 4$	(1128.8)	$17\ 772\ 3$	(201.1) (34233)	$16\ 472\ 7$	(120.0) (2.892.7)
MONTEZUMA'S REVENCE		(1,310.5)	0.2	(1,120.0) (0.4)	0.0	(0, 120.0)	0.0	(2,002.1)
MS. PAC-MAN	1.675.5	(41.9)	2.626.1	(139.8)	2.964.9	(0.0) (100.8)	3.116.2	(141.2)
NAME THIS GAME	2.265.6	(171.0)	4.105.4	(133.3)	4.105.6	(653.5)	3.925.2	(660.2)
PHOENIX	1.501.2	(278.1)	3.174.0	(543.5)	2.607.1	(644.1)	2.831.0	(581.0)
PITFALL!	-24.9	(14.8)	-28.2	(13.0)	-23.3	(9.6)	-21.4	(3.2)
Pong	-15.9	(1.0)	12.2	(1.0)	15.2	(0.7)	15.1	(1.0)
Pooyan	2.278.9	(273.7)	3.528.9	(256.3)	3.387.8	(182.8)	3.700.4	(349.5)
Private Eye	81.6	(15.6)	60.4	(92.4)	1,447.4	(2.567.9)	3.967.5	(5,540.6)
Q*BERT	674.7	(53.6)	3,142.1	(1,238.7)	7.585.4	(2,787.4)	9.875.5	(1,385.3)
RIVER RAID	3,166.2	(125.2)	8,738.1	(500.0)	10,733.1	(229.9)	10,210.4	(435.0)
Road Runner	14,742.2	(1,553.4)	37,271.7	(1,234.5)	41,918.4	(1,762.5)	42,028.3	(1,492.0)
Robotank	4.1	(0.3)	28.4	(1.4)	38.0	(1.6)	58.0	(6.4)
$\mathrm{Seaquest}^\dagger$	311.5	(36.9)	1,430.8	(162.3)	1,573.4	(561.4)	$1,\!485.7$	(740.8)
Skiing	-20,837.5	(1,550.2)	-17,545.5	(4,041.5)	-13,365.1	(800.7)	-12,446.6	(1,257.9)
Solaris	1,030.2	(40.3)	977.7	(112.5)	783.4	(55.3)	1,210.0	(148.3)
Space Invaders [†]	211.6	(14.8)	686.6	(37.0)	787.2	(173.3)	823.6	(335.0)
Star Gunner	603.0	(28.0)	1,492.3	(79.7)	$11,\!590.5$	(4,658.9)	39,269.9	(5,298.8)
Tennis	-23.8	(0.1)	-23.9	(0.1)	-23.9	(0.0)	-23.9	(0.0)
TIME PILOT	1,078.8	(60.3)	1,068.1	(138.8)	1,330.7	(177.1)	2,061.8	(228.8)
Титанкнам	56.5	(10.0)	64.9	(12.6)	65.1	(11.9)	60.0	(12.7)
Up and Down	4,378.4	(172.5)	6,718.3	(671.2)	5,962.8	(618.7)	4,750.7	(1,007.5)
Venture	24.4	(46.9)	21.4	(15.1)	4.4	(5.4)	3.2	(4.7)
Video Pinball	4,009.3	(271.9)	7,817.0	(1,884.4)	16,626.2	(3,740.6)	15,398.5	(2,126.1)
WIZARD OF WOR	184.2	(22.0)	1,377.4	(71.0)	1,440.6	(237.3)	2,231.1	(820.8)
YAR'S REVENGE	7,261.4	(777.1)	10,344.8	(452.4)	10,312.3	(528.9)	13,073.4	(1,961.8)
ZAXXON	53.5	(51.0)	672.3	(748.5)	$1,\!638.2$	(784.0)	3,852.1	(1,120.7)

_	_	
•	•	
•	•	
•	•	
		,
•	•	
		,
•	•	
•	•	
•	•	
•	•	•
•	•	
•	•	
•	•	
•	•	
•	•	
Ì	Ì	
•	•	1
•	•	
		,
•	•	
		,
•	•	
•	•	
•	•	
•	•	
	Ì	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
•	•	
	٠	1

Scores Can Mislead Which agent do you chose?

Scores Can Mislead Which agent do you chose? My Agent?

My Agent

Computation **# Frames**

	Gravitar	Montezuma's Reveng	e Pitfall!	PrivateEye	Solaris	Venture	
RND	3,906	8,152	-3	8,666	3,282	1,859	
PPO	3,426	2,497	0	105	3,387	0	
Dynamics	3,371	400	0	33	3,246	1,712	
SOTA	$2,209^{1}$	3,700 ²	0	15,806 ²	12,380 ¹	1,813 ³	
Avg. Human	3,351	4,753	6,464	69,571	12,327	1,188	

Table 1: Comparison to baselines results. Final mean performance for various methods. State of the art results taken from: [1] (Fortunato et al., 2017) [2] (Bellemare et al., 2016) [3] (Horgan et al., 2018)

100 Million Frames

Citing results using different methodologies

200M Frames 1-actor: ~ 4 days

2 Billion Frames

Table 3: Performance of the proposed algorithm, DQN_e^{MMC} +SR, compared to various agents on the "hard exploration" subset of Atari 2600 games. The DQN results reported are from Machado et al. (2018a) while the DQN_{CTS}^{MMC} , $DQN_{PIXELCNN}^{MMC}$ and RND results were obtained through personal communication with the authors of the corresponding papers. Burda et al. did not evaluate RND in FREEWAY. When available, standard deviation is reported between parentheses. See text for details.

	D	QN	DQN	J_e^{MMC}	DQN _{CTS}	DQN ^{MMC} _{PIXELCNN}	RI	ND	DQN_e^N	^{AMC} +SR
FREEWAY	32.4	(0.3)	29.5	(0.1)	29.2	29.4	-	-	29.4	(0.1)
GRAVITAR	118.5	(22.0)	1078.3	(254.1)	199.8	275.4	790.0	(122.9)	457.4	(120.3)
Mont. Rev.	0.0	(0.0)	0.0	(0.0)	2941.9	1671.7	524.8	(314.0)	1395.4	(1121.8)
PRIVATE EYE	1447.4	(2,567.9)	113.4	(42.3)	32.8	14386.0	61.3	(53.7)	104.4	(50.4)
SOLARIS	783.4	(55.3)	2244.6	(378.8)	1147.1	2279.4	1270.3	(291.0)	1890.1	(163.1)
VENTURE	4.4	(5.4)	1220.1	(51.0)	0.0	856.2	953.7	(167.3)	1348.5	(56.5)

50M Frames 1-actor: ~ 24 hours

2B Frames 1-actor: ~ 40 days

Computation # Seeds

Algorithm	# Seeds
DQN	
Double DQN	6
Prioritized Replay	8
Duelling DQN	
PPO	3
TRPO	1
A3C	5
ACER	
RAINBOW	

- Computation is expensive
- •The entire benchmark is massive...
- Do we need results on every game?

Moving Forwards

Reducing Computation 3-bit Color

Space Invaders

Freeway

Reducing Fragmentation ale-py

- •Soon you can use upstream ALE in Gym!
- •This will now follow all of the best practices!
- •No need to compile the ALE from scratch!
- ROM checksum validation!

import gym

env = gym.make("ale-py:Pong-v5")

Accessible Visualizations ale-ts

k

L.

Takeaways

- Hyperparameters, hyperparameters, hyperparameters. Report **ALL** environment hyperparameters.
- Benchmarks evolve. Fragmentation can become an issue.
- Take caution when directly citing results. What methodologies were used? If possible, gather data yourself.
- Be wary of results with few seeds, there's well known games that have multimodal return distributions.

Thanks!