Admin

» Use slack for communication with me and each other

» In class quiz next monday

- Wednesday we discuss the quiz

» Office hours will be once a week in an Asia friendly time: 6pm ?
» | have been adding to the project doc. Start now if you like

- We will do mentor sign up this week

- Any admin questions for me?

fenmnanRR R RR AR AR AR
L

SR ERERRRA AR
£ 1553333933333

i

il

 Shhoapbin

About me

What is Reinforcement Learning?

- Agent-oriented learning—Ilearning by interacting with an
environment to achieve a goal

» Learning by trial and error, with only delayed evaluative
feedback (reward)

- the kind of machine learning like natural learning (animals)

- learning that can tell for itself when it is right or wrong

Plan for today

Plan for today

Goal: Remind you about RL & sequential decision making

Plan for today

Goal: Remind you about RL & sequential decision making
» The basics of RL.:

- states, actions, rewards, time, MDPs, policies, value

Plan for today

Goal: Remind you about RL & sequential decision making
» The basics of RL:
- states, actions, rewards, time, MDPs, policies, value

» Q-learning

Plan for today

Goal: Remind you about RL & sequential decision making
» The basics of RL:

- states, actions, rewards, time, MDPs, policies, value
» Q-learning

» Function approximation in RL

Plan for today

Goal: Remind you about RL & sequential decision making

» The basics of RL:

- states, actions, rewards, time, MDPs, policies, value
» Q-learning
» Function approximation in RL

- Comments throughout on open research challenges,
particularly related to learning in the real world!

Many ways to learn about RL

Reinforcement
Learning

An Introduction
second edition

o 1\) Y r" !
/ /ﬂ e ‘* ANAA Y 4
A ' / \ i‘. o L ‘,/".
I[f By et
j 'l \. W, O Sl |
‘ NN : Y i ?
) wh |
i 1 Al
| o | ':"f f
: 7] W it
! a4 -;.:."_ ;/ { |
Iy e
[/] i
I/ L4 | A
Y/ A /’ (f
i A 7 f
‘

Richard S. Sutton and Andrew G. Barto -7 | A\ Nn

......

2nd edition: free and online

4 course RL specialization
(uab.ca/RLMOQOC)

http://uab.ca/RLMOOC

Key characteristics of RL

 Evaluative feedback (reward)

* Delayed consequences

» Must associate different actions with different situations
* Online and Incremental learning

* Need for trial and error, to explore as well as exploit

* Non-stationarity

Multi-armed bandits

Reward
distribution

 Estimate the value of each action In
order to find the best

* Only get samples of the reward by
4 1 Y1 84 %R trying an action: rewards of arms not
Hoe 8, chosen are not revealed

 Means we need to try each arm
enough, but we also don't want to
i 2 3 4 5 6 7 8 9 10 suffer too much loss of potential reward

» => the exploration / exploitation
tradeoff

Learning in a multi-armed bandit

Average
reward

0.5 -

e=0.01

e =0 (greedy)

|
250

| |
500 750

Steps

sum of rewards when a taken prior to ¢ B Zf;i R, -1 A;=aq

Qi(a) =

number of times a taken prior to ¢

Zf;i]1147;:&

|
1000

Reward
distribution

4 o

Action

gx(a) = E[Ry | Ay =a]

A; = argmax Q;(a)

Dimensions of learning revealed by the MAB
problem

* The need to learn online and incrementally
NewFEstimate <+ OldEstimate + StepSize [Target— OldEstjmate}

» [racking and non-stationary tasks
Q?H—l = Qn T O {Rn — Qn}

* The role of initializing algorithms (e.g., optimistic init)

* Role of exploration algorithms (e.g., Ol, e-greedy, UBC)

 Gradient methods

From Bandits to MDPs

* The k-armed bandit task shares some of the same key
characteristics of the RL problem:

 Evaluative feedback (reward)

* Online and incremental learning

* Need for trial and error, to explore as well as exploit
* Non-stationary???

» Let's see how Markov Decision Processes and the RL problem
differ from Bandits

The RL Interface

Environment

The RL Interface

state
S5, €8

The RL Interface

state action

St ed At S Q[(St)

Environment

o

=

The RL Interface

state action

§ €S A, € 9(S))

Environment

o

=

The RL Interface

state reward action

St €S| |RyEZR A, € A(S)

Environment

& +10
= L.

The RL Interface

action
state reward O

SH_IECSD Rl‘+1€% AIEQQ[(SZ‘)

Environment

The interaction generates a stream of experience!

state reward action

St €S| |RyEZR A, € A(S)

Environment

The interaction generates a stream of experience!

action
state reward O

SH_IECSD Rl‘+1€% AIEQQ[(SZ‘)

Environment

Finite Markov Decision Processes

* Environment may be unknown, stochastic and complex
» we formalize this with the language of MDPs
* An RL problem is a finite MDP if:
» the set of states, actions, and rewards are finite

* there is a transition function that describes the probabillities
of all possible next state S', and reward R

» the state satisfies the Markov Property

Finite Markov Decision Processes

* Environment may be unknown, stochastic and complex
» we formalize this with the language of MDPs
* An RL problem is a finite MDP if:
» the set of states, actions, and rewards are finite

* there is a transition function that describes the probabilities
of all possible next state S', and reward R

» the state satisfies the Markov Property

The dynamics of an MDP

The dynamics of an MDP
p(s',r|s,a)

The dynamics of an MDP
p(s',r|s,a)

P IXAEXSE XA — [0, 1]
Z Zp(s’,r\s,a)z I,Vs € &,a € A(s)

seS rek

The dynamics of an MDP
p(s',r|s,a)

P IXAEXS XA — |0, 1]
2 Zp(s’,r\s,a)z I,Vs € &,a € A(s)

seS rek

Remembering earlier states would not improve predictions about the future

The goal of life: more reward

The goal of life: more reward

 The agent's objective is to maximize future total reward

The goal of life: more reward

 The agent's objective is to maximize future total reward

 The scalar return: Gt — Rt+1 + Rt-l-z + Rt+3 + ...

The goal of life: more reward

 The agent's objective is to maximize future total reward

 The scalar return: Gt — Rt+1 + Rt-|-2 + Rt+3 + ...

* But, the agent's interaction may never end, so we discount
rewards far into the future

G,=R_ +/R . »+7'R s+ ... 47 'R+ ...

o0

_ k

— z Y Ry gy
k=0

The goal of life: more reward

 The agent's objective is to maximize future total reward

 The scalar return: Gt — Rt+1 + Rt-|-2 + Rt+3 + ...

* But, the agent's interaction may never end, so we discount
rewards far into the future

G,=R_ +/R . »+7'R s+ ... 47 'R+ ...

_ i R Finite as longas 0 <y < 1
&7 7 and rewards are bounded

The goal of life: more reward

 The agent's objective is to maximize future total reward

 The scalar return: Gt — Rt+1 + Rt-|-2 + Rt+3 + ...

* But, the agent's interaction may never end, so we discount
rewards far into the future

G,=R_ +/R . »+7'R s+ ... 47 'R+ ...

_ i R Finite as longas 0 <y < |
&7 7 and rewards are bounded

* In each state, the agent should choose the action that results In
the highest return, in expectation—why the expectation?

Key characteristics of RL

M Evaluative feedback (reward)

M Delayed consequences

 Must associate different actions with different situations
* Online and Incremental learning

* Need for trial and error, to explore as well as exploit

* Non-stationarity

Policies

* Deterministic policy

(s) =a
/ States\ /Actions\
(s
_ 8 / __—

Policies

* Deterministic policy

(s) = a
/ States /Actions\
s Tl
st a1
_ s / __—

Policies

* Deterministic policy

(s) = a

/ States\

/Actions\

k/

a1

\/

State Action
SO d1
S1 do
S2 do

Policies

» Stochastic policy:
(a|s)

« where), n(a]s)=1

acd(s)

. and w(als) =0

Policies

» Stochastic policy:
(a|s)

« where), n(a]s)=1

acd(s)

. and w(al|s) = 0

w(als)

70%
60%
50%
40%
30%
20%
10%

Down

Action

Left

1
T

T

T

Right

Policies

» Stochastic policy:
(a|s)

« where), n(a]s)=1

acd(s)

. and w(al|s) = 0

w(als)

70%
60%
50%
40%
30%
20%
10%

B

Down

Action

Left

II = B I-

Right

Valid and invalid policies

Left Right

Valid and invalid policies

1: Left with 50% probability
and
Right with 50% probability

Left Right
LLRLRLRRR..

Valid and invalid policies

Left

Right

1: Left with 50% probability
and
Right with 50% probability

LLRLRLRRR..

2: Alternate Left and Right

LRLRLRLRL..

Valid and invalid policies

1: Left with 50% probability
and
Right with 50% probability

Left Right

LLRLRLRRR..

2: Alternate Left and Right

\

N _ - 4
- - N . '.'
‘AN - - A o

‘ > ,/;f«i . P 4
s B\ N
- RS EEN
N e
oo iy
N <
% $ °
. Y,
Al \0\‘11 o
4,
R S
) ! ’ »

Markov Property

Action-value functions

* An action-value function says how good it is to be in a state,
take an action, and thereafter follow a policy:

Qﬂ('ga Cl) — [:ﬂ [Rt+1 T th+2 T yth+3 "o | St — S’At — Cl]

Action-value functions

* An action-value function says how good it is to be in a state,
take an action, and thereafter follow a policy:

q,(s,a) =

E_ [Rz+1 +yR. »+ 7R 5...|S, =5,A = a]

q,(s,a)

time

Optimal Polices

» Apolicy 77 is optimal if it maximizes the action-value function:

Qﬂ*(s’ a) = mj;aX 45, @) = 44(5,) VseS, ae As)

* Thus all optimal policies share the same optimal value function

* Given the optimal value function, it is easy to act optimally:

ﬂ*(S) = arg max q*(S, a) ‘greedification”
d

we say that the optimal policy is greedy with respect to the
optimal value function

* There Is always at least one deterministic optimal policy

GridWorld Example

—————————e e lvv ————

e

GridWorld Example

—————————e e lvv ————

e

Exercise: what's optimal?

Exercise: what's optimal?
(X,

A, A

S I SV
T 1

(X) = A, (X) =A,

Exercise: what's optimal?
(X,

A, A

S I SV
T 1

(X) = A, (X) =A,

Exercise: what's optimal?
(X

X)=1
A V

. \:?‘
,’;
F
. -

(X) =4, (X) = A,

+2

Exercise: what's optimal?

Exercise: what's optimal?
(X,

n n y (X)) =1
1 vy (X)=0
0 I+1 0 40

.
T 1

(X) = A, (X) =A,

Exercise: what's optimal?
(X,

n n y (X)) =1
1 vy (X)=0
0 I+1 0 40

.
T 1

(X) = A, (X) =A,

Exercise: what's optimal?

v, (X) =1
Al A2

8 v, (X)=0
(0 S

? ? Vﬂl(X) — 1+O.9*O+(O'9)2*1+“.

X)) =4, m(X)=A,

Exercise: what's optimal?
(X,

n n y (X)) =1
1 vy (X)=0
0 I+1 0 40

I 2
%@ %) v (X) = i (0.9)%
k=0

(X) = A, (X) =A,

Exercise: what's optimal?
(X,

n n y (X)) =1
1 vy (X)=0
0 I+1 0 40

I 2
(i) (i) = 1
X — O.92k= D,
Vr (%) Z‘)(=10 © 3

(X) = A, (X) =A,

Exercise: what's optimal?

v, (X) = 04+0.9%2+(0.9)* 0+...

Exercise: what's optimal?
(X,

A; A vy (X)=0
0 I+1 0 40

I 2
(i) (i) = 1
X — O.92k= D,
Vr (%) Z‘)(=10 © 3

y (X) = Z (0.9)2k+1 %9
(X) = A, X) =4, k=0

y (X)) =1

Exercise: what's optimal?

(X
A n vy (X)) =1
1 2 v (X) =0
0 I+1 IO +2
= 1
X) = 0.9 2k= AV R
%} %) V() Z‘)(=100 © 53
0 0.9
v, (X) =) (0.9)%+1%2 = — 5y P2 R 95

(X) = A4 (X) =A, k=0

Exercise: what's optimal?

(X
A n vy (X)) =1
1 2 v (X) =0
0 I+1 IO +2
= 1
X) = 0.9 2k= AV R
%} %) V() Z‘)(=100 © 53
0 0.9
v, (X) =) (0.9)%+1%2 = — 5y P2 R 95

(X) = A4 (X) =A, k=0

We can only directly solve small MDPs

left

f right
: I+1 IO . 2 Deterministic Brute-Force
? ? Policies Search

We can only directly solve small MDPs
+2
Policies Search

Policies i Search

We can only directly solve small MDPs
left right
L3)
° ? ? Policies Search
| 5] TNt 9
T

RL methods based on

Bellman Equations

Key characteristics of RL

M Evaluative feedback (reward)

M Delayed consequences

MMust associate situations with actions
* Online and Incremental learning

* Need for trial and error, to explore as well as exploit

* Non-stationarity

Key characteristics of RL

M Evaluative feedback (reward)

M Delayed consequences Characteristics

M Must associate situations with actions ot the problem

* Online and Incremental learning

* Need for trial and error, to explore as well as exploit

* Non-stationarity

Key characteristics of RL

M Evaluative feedback (reward)

M Delayed consequences Characteristics

M Must associate situations with actions ot the problem

* Online and Incremental learning

Characteristics

* Need for trial and error, to explore as well as exploit .
of solution/alg

* Non-stationarity

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step
Choose A from S using policy derived from @ (e.g., e-greedy)

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S

Loop for each step
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S

Loop for each step
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’

Q(S,A) «+ Q(S,A) + a[R + vymax, Q(S5",a) — Q(S. A)]

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a|R + ymax, Q(S,a) — Q(S,A)]
S« 5

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7,

O converges to 4«

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S

Loop for each step s B OBt
Choose A from S using policy derived from @ (e.g., e-greedy) R i e TS
Take action A, observe R, S’
Q(S,A) + Q(S,A) + « [R + vymax, Q(S5",a) — Q(S. A)]
S« 5

e Q-learning converges (Watkins & Dayan 1992) — learning
long-term optimal behavior without any model of the
environment, for arbitrary MDPs!

Key characteristics of RL

M Evaluative feedback (reward)
M Delayed consequences
M Must associate different actions with different situations

* Online and Incremental learning

Characteristics

* Need for trial and error, to explore as well as exploit .
of solution/alg

* Non-stationarity

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a|R + ymax, Q(S,a) — Q(S,A)]
S« 5

until S 1s terminal

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a|R + ymax, Q(S,a) — Q(S,A)]
S« S’ _——e

until S is terminal error term

Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step of episode:

Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, §/ "5

e~
Q(S,A) + Q(S,A) + a|R+ ymax, Q(5",a) — Q(S, A)]
S« S’ —. —_—_——

until S is terminal error term

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ yth+3 S =84, = a]

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ yth+3 S =84, = a]

« We don't have to wait!

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ yth+3 S =84, = a]

« We don't have to wait!

» Lets use gn(next-state,next-action) as a replacement for Ri+2 + YRt+3 +
Y2Rt+4 o

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ yth+3 S =84, = a]

« We don't have to wait!

» Lets use gn(next-state,next-action) as a replacement for Ri+2 + YRt+3 +
Y2Rt+4 o

4r(5,@) = B [Riyy + YRps + 7Ry | S, = 5,4, = d]

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ yth+3 S =84, = a]

« We don't have to wait!

» Lets use gn(next-state,next-action) as a replacement for Ri+2 + YRt+3 +
2
VR4 ... q.(s,a) = [, [Rt+1 T 7@&2 + 7R3 -] | S, = 5,4, = a]

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ yth+3 S =84, = a]
* We don't have to walt!
» Lets use gn(next-state,next-action) as a replacement for Ri+2 + YRt+3 +

2
VR4 ... q.(s,a) = E, [Rt+1 T 7@+2 + }/th+3 :] | S, =5,A, = a]
q.(s,a) =, [Rm +7q, (S, 1,A,.) | S, =5,A, = a]

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ yth+3 S =84, = a]

« We don't have to wait!

» Lets use gn(next-state,next-action) as a replacement for Ri+2 + YRt+3 +
2
Y Rt+4 o Qn'(sa a) = o [RH_I + }/@H_z + }/ZRH_:; .] ‘ SZ‘ — S’At — a]
qn(5.a) = E, [R) +7q,(Si1.Ary) | S, = 5.4, = d

use (Q-learning’s estimate in its update

Bootstrapping: key idea in Q-learning and all

temporal-difference (TD) learning
* You might think we need a complete trajectory of rewards to estimate
values

q,(s,a) =, [Rt+1 + YR+ ?’th+3 S =84, = a]

« We don't have to wait!

» Lets use gn(next-state,next-action) as a replacement for Ri+2 + YRt+3 +
2
Y Rt+4 o Qn'(sa a) = o [RH_I + }/@H_z + }/ZRH_:; . j ‘ SZ‘ — S’At — CZ]
qn(5.a) = E, [R) +7q,(Si1.Ary) | S, = 5.4, = d

use (Q-learning’s estimate in its update

« Q-learning update is based on the Bellman optimality equation:

qi(s,a) = E, | R + / max qx(S;y1,a) | §,=5,A, =a

JT

—_———
Q-learning'’s target for Q(S¢, A¢)

Bellman equations

Bellman equations

» Define a relationship between the value of a state and the value of its possible
successor states

Bellman equations

* Define a relationship between the value of a state and the value of its possible
successor states

q(5,0) =) Y p(ssrs,a) |r+7) ala'|s)q,(s"a)
s’ r a’

Bellman equations

* Define a relationship between the value of a state and the value of its possible
successor states

/

\)

q(5,0) =) Y p(ssrs,a) |r+7) ala'|s)q,(s"a)

* There are Bellman Equations for vy, v+, and g~

Bellman equations

» Define a relationship between the value of a state and the value of its possible
successor states

q(5,0) =) Y p(ssrs,a) |r+7) ala'|s)q,(s"a)
s’ r a’

* There are Bellman Equations for vy, v+, and g~

» Classical Dynamic Programming algorithms (planning), compute value
functions and optimal policies using Bellman Equations, given p (the model)

Bellman equations

» Define a relationship between the value of a state and the value of its possible
successor states

/

\)

q(5,0) =) Y p(ssrs,a) |r+7) ala'|s)q,(s"a)

* There are Bellman Equations for vy, v+, and g~

» Classical Dynamic Programming algorithms (planning), compute value
functions and optimal policies using Bellman Equations, given p (the model)

 Many algorithms in RL, like Q-learning, can be seen as approximately solving
the Bellman Equation with samples from the environment (model-free)

Key characteristics of RL

M Evaluative feedback (reward)
M Delayed consequences
M Must associate different actions with different situations

[Online and Incremental learning

Characteristics

* Need for trial and error, to explore as well as exploit .
of solution/alg

* Non-stationarity

The Exploration-Exploitation dilemma

The Exploration-Exploitation dilemma

* You cannot choose the action with the max value every time
what if your estimates of g are wrong?

you must try all the actions...an infinite number of times, in each
state!

The Exploration-Exploitation dilemma

* You cannot choose the action with the max value every time
what if your estimates of g are wrong?

you must try all the actions...an infinite number of times, in each
state!

» But, you can't explore all the time

The Exploration-Exploitation dilemma

* You cannot choose the action with the max value every time
what if your estimates of g are wrong?

you must try all the actions...an infinite number of times, in each
state!

» But, you can't explore all the time

* You must balance exploiting (picking what you think is the best), and
exploring (refining your estimates)

How does Q-learning handle exploration?

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., e-greedy:

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., e-greedy:
| —¢€

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., e-greedy:
| —¢€

ﬁjq

= argmax (J(3,, a)

d

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., e-greedy:
| —€ €

ﬁjq

= argmax (J(3,, a)

d

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., e-greedy:
| —€ €

ha_
= %3

A, = argmax Q(S,, a) A, = Random action

d

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.d., e-greedy: dithering or undirected exploration

]l —€ €

s

= argmax Q(5,a) A, = Random action

d

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.d., e-greedy: dithering or undirected exploration
| —€ €
- optimistic initial values

- R-max, MBIE
g § % §> (require models)
e

= argmax Q(5,a) A, = Random action

d

Off-policy learning

Off-policy learning

» Learning about the value of one policy while using another policy to
generate the trajectory

Off-policy learning

» Learning about the value of one policy while using another policy to
generate the trajectory

e Q-learning is off-policy:
the agent learns about the value of its deterministic greedy policy
* which gradually becomes optimal

from data generated while behaving in a more exploratory manner

Off-policy learning

» Learning about the value of one policy while using another policy to
generate the trajectory

e Q-learning is off-policy:
the agent learns about the value of its deterministic greedy policy
* which gradually becomes optimal
from data generated while behaving in a more exploratory manner

» Also useful for batch-RL, learning from demonstration, and parallel
learning (e.g., many value functions, many policies, option-models)

Key characteristics of RL

M Evaluative feedback (reward)

M Delayed consequences

M Must associate different actions with different situations
M Online and Incremental learning

M Need for trial and error, to explore as well as exploit

* Non-stationarity

Q-learning: learning never ends

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) «+ Q(S,A) + « [R + ymax, Q(S’,a) — Q(S, A)]
S« 5

Q-learning: learning never ends

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily

Initialize S
Loop for each step
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,4) = Q(S, A) H{a]|R +ymax, Q(S',a) — Q(S, A)]
S+ S

Key characteristics of RL

M Evaluative feedback (reward) MDPs, value-
functions,
M Delayed consequences volicies

M Must associate different actions with different situations

M Online and Incremental learning Bootstrapping

Randomization,

M Need for trial and error, to explore as well as exploit Off-policy

M Non-stationarity Never-ending learning

Now how do we do this with approximation?

The need for approximation

* |n real world problems, tables of values would become intractably large
sometimes the state-space is too large (e.g., Go)
sometimes the state-space is continuous

» |nstead using tables for our value functions, we will use parameterized
functions

* Frame learning these approximate value functions as a supervised
learning problem:

new challenge balancing Generalisation and Discrimination

Function approximation

» Represent the action-value function by a parameterized
function with parameters w € R”

Q(S, Cl, W) ~ Q*(Sa Cl)

* The approximator could be a NN, with the weights being the
parameters of the network

or simply a linear weighting of fixed features

* Forlarge applications, it is important that all computations scale
linearly with the number of parameters

Function approximation

» Represent the action-value function by a parameterized
function with parameters w € R”

4(s,a,w) = q,(s,a) = q,s,a)

* The approximator could be a NN, with the weights being the
parameters of the network

or simply a linear weighting of fixed features

* Forlarge applications, it is important that all computations scale
linearly with the number of parameters

Approximating g~ with an NN

weights

Approximating g~ with an NN

Approximating g~ with an NN

weights

Generalization: Updates to One State Affect the
Value of Other States

Generalization: Updates to One State Affect the
Value of Other States

Generalization: Updates to One State Affect the
Value of Other States

Generalization: Updates to One State Affect the
Value of Other States

Discrimination: The ability to make the value
of two states different

Discrimination: The ability to make the value
of two states different

Categorizing methods
based on Generalization and Discrimination

High
Generalization

Low Discrimination High Discrimination

Low
Generalization

Categorizing methods
based on Generalization and Discrimination

High
Generalization

Low Discrimination High Discrimination

Low Tabular
Generalization Methods

Categorizing methods
based on Generalization and Discrimination

Aggregate High

All States Generalization

Low Discrimination High Discrimination
Low Tabular

Generalization Methods

Categorizing methods
based on Generalization and Discrimination

Aggregate High *

All States Generalization

Low Discrimination High Discrimination
Low Tabular

Generalization Methods

Categorizing methods
based on Generalization and Discrimination

Aggregate High *

All States Generalization ‘

Low Discrimination High Discrimination
Low Tabular

Generalization Methods

Semi-gradient Q-learning

* There is an obvious generalization of Q-learning to function
approximation (Watkins 1989)

» Consider the following objective function:

2
ZL(W) = —[(Rz+1 +ymax g(S,.,a,w) — q(S,, A, W))]
and the update used in Q-learning with function approximation
aé(sp Ata Wl‘)

W;

AW = a(R,,, +y max §(S,, 1, @, W) — 4(S, A, W)

Semi-gradient Q-learning

* There is an obvious generalization of Q-learning to function
approximation (Watkins 1989)

» Consider the following objective function:

2
ZL(W) = —[(Rz+1 +ymax g(S,.,a,w) — q(S,, A, W))]
and the update used in Q-learning with function approximation
aé(Sta Ata Wl‘)

W;

AW = a(R,,, +y max §(S,, 1, @, W) — 4(S, A, W)

* The target here depends on the w. It's like we ignored the gradient
of the value of the next state

TD + function approximation can lead to instability

TD + function approximation can lead to instability

* Q-learning can diverge

TD + function approximation can lead to instability

* Q-learning can diverge
* |tis not because of control,

nor exploration, greedification, or sampling

TD + function approximation can lead to instability

e Q-learning can diverge
e |tis not because of control,
nor exploration, greedification, or sampling

|t is not completely due to non-linear function approximation

TD + function approximation can lead to instability

e Q-learning can diverge
» |tis not because of control,
nor exploration, greedification, or sampling
|t is not completely due to non-linear function approximation

* Dynamic programming methods diverge with function approximation!

TD + function approximation can lead to instability

« Q-learning can diverge
» |tis not because of control,
nor exploration, greedification, or sampling
|t is not completely due to non-linear function approximation
* Dynamic programming methods diverge with function approximation!

* Even TD with linear function approximation can diverge!
(in off-policy prediction)

The deadly Iriad

® o ©
Off-policy Learning

Algorithmic solutions to the Iriad

* Newish Gradient-TD methods (TDC, GQ, proximal-gradientTD) developed by Maei (2011)
and Mahadevan et al (2015) are sound with off-policy + function approximation

limited practical experience
basically unexplored with non-linear function approximation

* New methods to reduce variance in off-policy training (Re-Trace, V-trace, ABQ)

can diverge

» Divergence with control and NN is a complex story (van Hasselt et al, 2018)

its more likely with larger differences between the policies
(common Iin prioritized replay, sample-based planning, parallel learning)

its more likely with larger networks ... both things we might want in our learning systems!

http://www.incompleteideas.net/papers/maei-thesis-2011.pdf
https://people.cs.umass.edu/~mahadeva/papers/gtduai2015.pdf
https://arxiv.org/abs/1606.02647
https://arxiv.org/pdf/1802.01561.pdf
https://arxiv.org/abs/1702.03006
https://arxiv.org/abs/1812.02648

Significant progress in the application of RL

Learned the world’s best player of Backgammon (Tesauro 1995)
Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al 2006+)

Widely used in the placement and selection of advertisements and pages on the
web (e.g., A-B tests)

Used by Watson to make strategic decisions in Jeopardy!, beating the best human
players (IBM 2011)

Achieved human-level performance on Atari games from pixel-level visual input, in
conjunction with deep learning (Deepmind 2015)

AlphaGo to defeat the world’s best Go players (DeepMind, 2016, 2017), AlphaZero
to decisively defeat all in Go, chess, and shogi

The good and bad of simulations

The good and bad of simulations

» Simulations are great: they facilitate rapid progress, careful scientific
experimentation

The good and bad of simulations

» Simulations are great: they facilitate rapid progress, careful scientific
experimentation

» Simulations also allow us to cheat a bit:
run on parallel copies of the environment
- easy to reset states, learn from death, ignore damage

knowledge of the underlying dynamics of the world

The good and bad of simulations

» Simulations are great: they facilitate rapid progress, careful scientific
experimentation

» Simulations also allow us to cheat a bit:
run on parallel copies of the environment
easy to reset states, learn from death, ignore damage
knowledge of the underlying dynamics of the world

» Lose focus on data efficiency, parameter sensitivity, exploration challenges

The good and bad of simulations

» Simulations are great: they facilitate rapid progress, careful scientific
experimentation

» Simulations also allow us to cheat a bit:
run on parallel copies of the environment
easy to reset states, learn from death, ignore damage
knowledge of the underlying dynamics of the world
» Lose focus on data efficiency, parameter sensitivity, exploration challenges

* Many of the shortcuts we take in simulations are not possible on robots

We are not done!

MontezumaRevenge

Pitfall
ToTE
PrivateEye
Qbert
Seaquest
Solaris
Spacelnvaders
Tutankham
Venture
WizardOfWor
Zaxxon

«U
100.0
147.5

1390.0
2090.0
678.5
130.3
760.0
3480.0
6380.0

) v Eiia A agA v AU Ak sisias Uik Uaiiy Ay srs sksesiieis
Game ES DQN w/ e-greedy DQN w/ param noise
Alien 994.0 1535.0 2070.0
Amidar 112.0 281.0 403.5
BankHeist 225.0 510.0 805.0
BeamRider 744.0 8184.0 7884.0
Breakout 9.5 406.0 390.5
Enduro 95.0 1094 1672.5
Freeway 31.0 32.0 31.5
Frostbite 370.0 250.0 1310.0

-0 ;
133.0 100.0

7625.0 7525.0
8335.0 8920.0
720.0 400.0
1000.0 1205.0
109.5 181.0
0 0
2350.0 1850.0
8100.0 8050.0

(Plappert et al, 2017)

We are not done!

MontezumaRevenge

Pitfall
ToTE
PrivateEye
Qbert
Seaquest
Solaris
Spacelnvaders
Tutankham
Venture
WizardOfWor
Zaxxon

«U
100.0
147.5

1390.0
2090.0
678.5
130.3
760.0
3480.0
6380.0

) v Eiia A agA v AU Ak sisias Uik Uaiiy Ay srs sksesiieis
Game ES DQN w/ e-greedy DQN w/ param noise
Alien 994.0 1535.0 2070.0
Amidar 112.0 281.0 403.5
BankHeist 225.0 510.0 805.0
BeamRider 744.0 8184.0 7884.0
Breakout 9.5 406.0 390.5
Enduro 95.0 1094 1672.5
Freeway 31.0 32.0 31.5
Frostbite 370.0 250.0 1310.0

-0 ;
133.0 100.0

7625.0 7525.0
8335.0 8920.0
720.0 400.0
1000.0 1205.0
109.5 181.0
0 0
2350.0 1850.0
8100.0 8050.0

(Plappert et al, 2017)

We are not done!

s vV

firv Ao A v ALk iieas Uik Uaiiy Ay srs sksessieis
Game ES DQN w/ e-greedy DQN w/ param noise
Alien 994.0 1535.0 2070.0
Amidar 112.0 281.0 403.5
BankHeist 225.0 510.0 805.0
BeamRider 744.0 8184.0 7884.0
Breakout 9.5 406.0 390.5
Enduro 95.0 1094 1672.5
Freeway 31.0 32.0 31.5
Frostbite 370.0 250.0 1310.0
MontezumaRevenge
Pitfall
 OITE «U +U .
PrivateEye 100.0 133.0 100.0
Qbert 147.5 7625.0 7525.0
Seaquest 1390.0 8335.0 8920.0
Solaris 2090.0 720.0 400.0
Spacelnvaders 678.5 1000.0 1205.0
Tutankham 130.3 109.5 181.0
Venture 760.0 0 0
WizardOfWor 3480.0 2350.0 1850.0
Zaxxon 6380.0 8100.0 8050.0
(Plappert et al, 2017)
HalfCheetah-vl (PPO, Policy Network Structure)
o0 e

3 1000 E

o X

%, ol /A %,

;| S ey

< —-10001 e (64,64) <

"""" (100,50,25)
—920001 e (400,300)
000 025 050 075 100 125 150 175 2.00
Timesteps x10°

1000
750
500
250

—250
—500
—750

HalfCheetah-vl (TRPO, Policy Network Activation)

it L':;";:;‘; ___________ tanh
: _,/~-='—"‘::"f‘,’¢ relu
-,-:"""'” sl /N leaky relu
0.00 025 050 075 1.00 125 150 L7 200
Timesteps X108

(Henderson et al, 2018)

Average Returns

1000

—1000 1

DDPG with HalfCheetah Environment - Critic Network Activations

) o 2l v
i, ﬂ'-*-v’«"‘\rf»"'V\f""‘-‘-a"'"'v"w b
"-rv_\‘ /.v/‘ s
el M
000 T otne
ﬂ’..j' ’_‘I/Nf'd
20001 g V™
| W
—— Critic Network Activation = RelU
0 Critic Network Activation = TanH
————— Critic Network Activation = Leaky RelU
0.00 025 050 075 100 1.25 1.50 175 2.00
Timesteps % 10°

We are not done!

?

VY RLLAANW Ao NgA

TV RAL? LA RALIAW WA SLL \.IJ.I.J.J

AN LVEL A1wal

F S & VW

Game ES DQN w/ e-greedy DQN w/ param noise .
: Boston Dynamics | TED
Alien 994.0 1535.0 2070.0
Amidar 112.0 281.0 403.5
BankHeist 225.0 510.0 805.0
BeamRider 744.0 8184.0 7884.0
Breakout 9.5 406.0 390.5
Enduro 95.0 1094 1672.5
Freeway 31.0 32.0 31.5
Frostbite 370.0 250.0 1310.0

MontezumaRevenge

Pitfall

PrivateEye 100.0 133.0 100.0
Qbert 147.5 7625.0 7525.0
Seaquest 1390.0 8335.0 8920.0
Solaris 2090.0 720.0 400.0
Spacelnvaders 678.5 1000.0 1205.0
Tutankham 130.3 109.5 181.0
Venture 760.0 0 0
WizardOfWor 3480.0 2350.0 1850.0
Zaxxon 6380.0 8100.0 8050.0
(Plappert et al, 2017)
HalfCheetah-v1 (PPO’ POIle Network Structure) HalfCheetah-v1 (TRPO, POIle Network ACtivation) DDPG W|th HaIfCheetah EnVironment = CI’ItIC NetWOI'k ACtivationS
---------------------------- 1000 6000
2000 e Ll il i
I — B 750 L, 9000 fy LA e i T
c gl o R = -\\‘\\ e c - A -\"'""’,\"'-.vv' ¥ i AR
S 1000 o 3 500 5 4000 W L at
~ / 250 = 3000 ot i
g 0 / SN & oD |
© /2 N, © & 2000
E S G | E ;
-0y . R (64,64) —250 < 1000, —— Critic Network Activation = ReLU
G (100,50,25) 500 of M ¥ | emee- Critic Network Activation = TanH
—20001 (400,300) wol ' T Critic Network Activation = Leaky RelU
0.00 025 050 075 1.00 125 150 175 2.0 a0 025 050 075 1.00 125 150 175 2.00 000 025 050 075 100 15 150 175 200
Timesteps x10° Timesteps x10° Timesteps x 10

(Henderson et al, 2018)

The dimensions of RL

* Problems
Prediction and control

MDPs, Contextual-DP, Contextual Bandits, and simple Bandits

» Solutions
Bootstrapping and Monte Carlo (unified by eligibility traces)
Tabular and function approximation
On-policy and off-policy
Model-based and model-free
Value-based and policy-based

Primitive actions and temporal abstraction

The dimensions of RL

