
Admin
• Use slack for communication with me and each other

• In class quiz next monday

• Wednesday we discuss the quiz

• Office hours will be once a week in an Asia friendly time: 6pm ?

• I have been adding to the project doc. Start now if you like

• We will do mentor sign up this week

• Any admin questions for me?

About me …

What is Reinforcement Learning?

• Agent-oriented learning—learning by interacting with an
environment to achieve a goal

• Learning by trial and error, with only delayed evaluative
feedback (reward)

- the kind of machine learning like natural learning (animals)

- learning that can tell for itself when it is right or wrong

Plan for today

Plan for today
Goal: Remind you about RL & sequential decision making

Plan for today
Goal: Remind you about RL & sequential decision making

• The basics of RL:

- states, actions, rewards, time, MDPs, policies, value

Plan for today
Goal: Remind you about RL & sequential decision making

• The basics of RL:

- states, actions, rewards, time, MDPs, policies, value

• Q-learning

Plan for today
Goal: Remind you about RL & sequential decision making

• The basics of RL:

- states, actions, rewards, time, MDPs, policies, value

• Q-learning

• Function approximation in RL

Plan for today
Goal: Remind you about RL & sequential decision making

• The basics of RL:

- states, actions, rewards, time, MDPs, policies, value

• Q-learning

• Function approximation in RL

• Comments throughout on open research challenges,
particularly related to learning in the real world!

Many ways to learn about RL

2nd edition: free and online
4 course RL specialization

(uab.ca/RLMOOC)

http://uab.ca/RLMOOC

Key characteristics of RL
• Evaluative feedback (reward)

• Delayed consequences

• Must associate different actions with different situations

• Online and Incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationarity

Multi-armed bandits

26 Chapter 2: Multi-armed Bandits

objective is to maximize the expected total reward over some time period, for example,
over 1000 action selections, or time steps.

This is the original form of the k-armed bandit problem, so named by analogy to a slot
machine, or “one-armed bandit,” except that it has k levers instead of one. Each action
selection is like a play of one of the slot machine’s levers, and the rewards are the payo↵s
for hitting the jackpot. Through repeated action selections you are to maximize your
winnings by concentrating your actions on the best levers. Another analogy is that of
a doctor choosing between experimental treatments for a series of seriously ill patients.
Each action is the selection of a treatment, and each reward is the survival or well-being
of the patient. Today the term “bandit problem” is sometimes used for a generalization
of the problem described above, but in this book we use it to refer just to this simple
case.

In our k -armed bandit problem, each of the k actions has an expected or mean reward
given that that action is selected; let us call this the value of that action. We denote the
action selected on time step t as At, and the corresponding reward as Rt. The value then
of an arbitrary action a, denoted q⇤(a), is the expected reward given that a is selected:

q⇤(a)
.
= E[Rt | At =a] .

If you knew the value of each action, then it would be trivial to solve the k -armed bandit
problem: you would always select the action with highest value. We assume that you do
not know the action values with certainty, although you may have estimates. We denote
the estimated value of action a at time step t as Qt(a). We would like Qt(a) to be close
to q⇤(a).

If you maintain estimates of the action values, then at any time step there is at least
one action whose estimated value is greatest. We call these the greedy actions. When you
select one of these actions, we say that you are exploiting your current knowledge of the
values of the actions. If instead you select one of the nongreedy actions, then we say you
are exploring, because this enables you to improve your estimate of the nongreedy action’s
value. Exploitation is the right thing to do to maximize the expected reward on the one
step, but exploration may produce the greater total reward in the long run. For example,
suppose a greedy action’s value is known with certainty, while several other actions are
estimated to be nearly as good but with substantial uncertainty. The uncertainty is
such that at least one of these other actions probably is actually better than the greedy
action, but you don’t know which one. If you have many time steps ahead on which
to make action selections, then it may be better to explore the nongreedy actions and
discover which of them are better than the greedy action. Reward is lower in the short
run, during exploration, but higher in the long run because after you have discovered
the better actions, you can exploit them many times. Because it is not possible both to
explore and to exploit with any single action selection, one often refers to the “conflict”
between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a complex
way on the precise values of the estimates, uncertainties, and the number of remaining
steps. There are many sophisticated methods for balancing exploration and exploitation
for particular mathematical formulations of the k -armed bandit and related problems.

• Estimate the value of each action in
order to find the best

• Only get samples of the reward by
trying an action: rewards of arms not
chosen are not revealed

• Means we need to try each arm
enough, but we also don’t want to
suffer too much loss of potential reward

• => the exploration / exploitation
tradeoff

Learning in a multi-armed bandit

26 Chapter 2: Multi-armed Bandits

objective is to maximize the expected total reward over some time period, for example,
over 1000 action selections, or time steps.

This is the original form of the k-armed bandit problem, so named by analogy to a slot
machine, or “one-armed bandit,” except that it has k levers instead of one. Each action
selection is like a play of one of the slot machine’s levers, and the rewards are the payo↵s
for hitting the jackpot. Through repeated action selections you are to maximize your
winnings by concentrating your actions on the best levers. Another analogy is that of
a doctor choosing between experimental treatments for a series of seriously ill patients.
Each action is the selection of a treatment, and each reward is the survival or well-being
of the patient. Today the term “bandit problem” is sometimes used for a generalization
of the problem described above, but in this book we use it to refer just to this simple
case.

In our k -armed bandit problem, each of the k actions has an expected or mean reward
given that that action is selected; let us call this the value of that action. We denote the
action selected on time step t as At, and the corresponding reward as Rt. The value then
of an arbitrary action a, denoted q⇤(a), is the expected reward given that a is selected:

q⇤(a)
.
= E[Rt | At =a] .

If you knew the value of each action, then it would be trivial to solve the k -armed bandit
problem: you would always select the action with highest value. We assume that you do
not know the action values with certainty, although you may have estimates. We denote
the estimated value of action a at time step t as Qt(a). We would like Qt(a) to be close
to q⇤(a).

If you maintain estimates of the action values, then at any time step there is at least
one action whose estimated value is greatest. We call these the greedy actions. When you
select one of these actions, we say that you are exploiting your current knowledge of the
values of the actions. If instead you select one of the nongreedy actions, then we say you
are exploring, because this enables you to improve your estimate of the nongreedy action’s
value. Exploitation is the right thing to do to maximize the expected reward on the one
step, but exploration may produce the greater total reward in the long run. For example,
suppose a greedy action’s value is known with certainty, while several other actions are
estimated to be nearly as good but with substantial uncertainty. The uncertainty is
such that at least one of these other actions probably is actually better than the greedy
action, but you don’t know which one. If you have many time steps ahead on which
to make action selections, then it may be better to explore the nongreedy actions and
discover which of them are better than the greedy action. Reward is lower in the short
run, during exploration, but higher in the long run because after you have discovered
the better actions, you can exploit them many times. Because it is not possible both to
explore and to exploit with any single action selection, one often refers to the “conflict”
between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a complex
way on the precise values of the estimates, uncertainties, and the number of remaining
steps. There are many sophisticated methods for balancing exploration and exploitation
for particular mathematical formulations of the k -armed bandit and related problems.

2.2. Action-value Methods 27

However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in most applications and in
the full reinforcement learning problem that we consider in subsequent chapters. The
guarantees of optimality or bounded loss for these methods are of little comfort when the
assumptions of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k -armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k -armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(with ties broken arbitrarily). Greedy action selection always exploits current knowledge to
maximize immediate reward; it spends no time at all sampling apparently inferior actions
to see if they might really be better. A simple alternative is to behave greedily most of
the time, but every once in a while, say with small probability ", instead select randomly

2.2. Action-value Methods 27

However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in most applications and in
the full reinforcement learning problem that we consider in subsequent chapters. The
guarantees of optimality or bounded loss for these methods are of little comfort when the
assumptions of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k -armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k -armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(with ties broken arbitrarily). Greedy action selection always exploits current knowledge to
maximize immediate reward; it spends no time at all sampling apparently inferior actions
to see if they might really be better. A simple alternative is to behave greedily most of
the time, but every once in a while, say with small probability ", instead select randomly

Dimensions of learning revealed by the MAB
problem

• The need to learn online and incrementally

• Tracking and non-stationary tasks

• The role of initializing algorithms (e.g., optimistic init)

• Role of exploration algorithms (e.g., OI, e-greedy, UBC)

• Gradient methods

42 Chapter 2: Multi-armed Bandits

2.10 Summary

We have presented in this chapter several simple ways of balancing exploration and
exploitation. The "-greedy methods choose randomly a small fraction of the time, whereas
UCB methods choose deterministically but achieve exploration by subtly favoring at each
step the actions that have so far received fewer samples. Gradient bandit algorithms
estimate not action values, but action preferences, and favor the more preferred actions
in a graded, probabilistic manner using a soft-max distribution. The simple expedient of
initializing estimates optimistically causes even greedy methods to explore significantly.

It is natural to ask which of these methods is best. Although this is a di�cult question
to answer in general, we can certainly run them all on the 10-armed testbed that we
have used throughout this chapter and compare their performances. A complication is
that they all have a parameter; to get a meaningful comparison we have to consider
their performance as a function of their parameter. Our graphs so far have shown the
course of learning over time for each algorithm and parameter setting, to produce a
learning curve for that algorithm and parameter setting. If we plotted learning curves
for all algorithms and all parameter settings, then the graph would be too complex and
crowded to make clear comparisons. Instead we summarize a complete learning curve
by its average value over the 1000 steps; this value is proportional to the area under the
learning curve. Figure 2.6 shows this measure for the various bandit algorithms from
this chapter, each as a function of its own parameter shown on a single scale on the
x-axis. This kind of graph is called a parameter study. Note that the parameter values
are varied by factors of two and presented on a log scale. Note also the characteristic
inverted-U shapes of each algorithm’s performance; all the algorithms perform best at
an intermediate value of their parameter, neither too large nor too small. In assessing

Average
reward

over first
1000 steps

1.5

1.4

1.3

1.2

1.1

1

�-greedy

UCB

gradient
bandit

greedy with
optimistic

initialization
α = 0.1

1 2 41/21/41/81/161/321/641/128

" ↵ c Q0

Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Each point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.

2.4. Incremental Implementation 31

To simplify notation we concentrate on a single action. Let Ri now denote the reward
received after the ith selection of this action, and let Qn denote the estimate of its action
value after it has been selected n� 1 times, which we can now write simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n� 1
.

The obvious implementation would be to maintain a record of all the rewards and then
perform this computation whenever the estimated value was needed. However, if this is
done, then the memory and computational requirements would grow over time as more
rewards are seen. Each additional reward would require additional memory to store it
and additional computation to compute the sum in the numerator.

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
requires memory only for Qn and n, and only the small computation (2.3) for each new
reward.

This update rule (2.3) is of a form that occurs frequently throughout this book. The
general form is

NewEstimate OldEstimate + StepSize

h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by taking

a step toward the “Target.” The target is presumed to indicate a desirable direction in
which to move, though it may be noisy. In the case above, for example, the target is the
nth reward.

Note that the step-size parameter (StepSize) used in the incremental method (2.3)
changes from time step to time step. In processing the nth reward for action a, the

32 Chapter 2: Multi-armed Bandits

method uses the step-size parameter 1

n
. In this book we denote the step-size parameter

by ↵ or, more generally, by ↵t(a).
Pseudocode for a complete bandit algorithm using incrementally computed sample

averages and "-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Loop forever:

A
⇢

argmax
a
Q(a) with probability 1� " (breaking ties randomly)

a random action with probability "
R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are e↵ectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average Qn of the n� 1 past rewards is modified to be

Qn+1

.
= Qn + ↵

h
Rn �Qn

i
, (2.5)

where the step-size parameter ↵ 2 (0, 1] is constant. This results in Qn+1 being a weighted
average of past rewards and the initial estimate Q1:

Qn+1 = Qn + ↵
h
Rn �Qn

i

= ↵Rn + (1� ↵)Qn

= ↵Rn + (1� ↵) [↵Rn�1 + (1� ↵)Qn�1]

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2Qn�1

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2↵Rn�2 +

· · · + (1� ↵)n�1↵R1 + (1� ↵)nQ1

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi. (2.6)

• The k-armed bandit task shares some of the same key
characteristics of the RL problem:

• Evaluative feedback (reward)

• Online and incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationary???

• Let's see how Markov Decision Processes and the RL problem
differ from Bandits

From Bandits to MDPs

Environment

Agent

The RL Interface

Environment

Agent

state
St ∈ 𝒮

The RL Interface

Environment

Agent

actionstate
St ∈ 𝒮 At ∈ 𝒜(St)

The RL Interface

Environment

Agent

actionstate At ∈ 𝒜(St)St+1 ∈ 𝒮

The RL Interface

Environment

Agent

actionrewardstate

+10

At ∈ 𝒜(St)St+1 ∈ 𝒮 Rt+1 ∈ ℛ

The RL Interface

Environment

Agent

actionrewardstate At ∈ 𝒜(St)St+1 ∈ 𝒮 Rt+1 ∈ ℛ

St

At Rt+1

St+1

The RL Interface

St+1 ∈ 𝒮

Environment

Agent

actionrewardstate At ∈ 𝒜(St)Rt+1 ∈ ℛ

The interaction generates a stream of experience!

St+1 ∈ 𝒮

Environment

Agent

actionrewardstate At ∈ 𝒜(St)Rt+1 ∈ ℛ

S0
A0 R1 S1

A1 R2 S2
A2 R3 S3

The interaction generates a stream of experience!

Finite Markov Decision Processes
• Environment may be unknown, stochastic and complex

• we formalize this with the language of MDPs

• An RL problem is a finite MDP if:

• the set of states, actions, and rewards are finite

• there is a transition function that describes the probabilities
of all possible next state S', and reward R

• the state satisfies the Markov Property

Finite Markov Decision Processes
• Environment may be unknown, stochastic and complex

• we formalize this with the language of MDPs

• An RL problem is a finite MDP if:

• the set of states, actions, and rewards are finite

• there is a transition function that describes the probabilities
of all possible next state S', and reward R

• the state satisfies the Markov Property

s

a

r

s′

The dynamics of an MDP

p(s′ , r |s, a)s

a

r

s′

The dynamics of an MDP

p(s′ , r |s, a)s

a

r

s′ ∑
s′ ∈𝒮

∑
r∈ℛ

p(s′ , r |s, a) = 1,∀s ∈ 𝒮, a ∈ 𝒜(s)

p : 𝒮 × ℛ × 𝒮 × 𝒜 → [0, 1]

The dynamics of an MDP

p(s′ , r |s, a)s

a

r

s′ ∑
s′ ∈𝒮

∑
r∈ℛ

p(s′ , r |s, a) = 1,∀s ∈ 𝒮, a ∈ 𝒜(s)

p : 𝒮 × ℛ × 𝒮 × 𝒜 → [0, 1]

Remembering earlier states would not improve predictions about the future

The dynamics of an MDP

The goal of life: more reward

The goal of life: more reward
• The agent's objective is to maximize future total reward

The goal of life: more reward
• The agent's objective is to maximize future total reward

• The scalar return: Gt ≐ Rt+1 + Rt+2 + Rt+3 + …

The goal of life: more reward
• The agent's objective is to maximize future total reward

• The scalar return:

• But, the agent's interaction may never end, so we discount
rewards far into the future

Gt ≐ Rt+1 + Rt+2 + Rt+3 + …

Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …

=
∞

∑
k=0

γkRt+k+1

The goal of life: more reward
• The agent's objective is to maximize future total reward

• The scalar return:

• But, the agent's interaction may never end, so we discount
rewards far into the future

Gt ≐ Rt+1 + Rt+2 + Rt+3 + …

Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …

=
∞

∑
k=0

γkRt+k+1 and rewards are bounded
Finite as long as 0 ≤ γ < 1

The goal of life: more reward
• The agent's objective is to maximize future total reward

• The scalar return:

• But, the agent's interaction may never end, so we discount
rewards far into the future

• In each state, the agent should choose the action that results in
the highest return, in expectation—why the expectation?

Gt ≐ Rt+1 + Rt+2 + Rt+3 + …

Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …

=
∞

∑
k=0

γkRt+k+1 and rewards are bounded
Finite as long as 0 ≤ γ < 1

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

• Must associate different actions with different situations

• Online and Incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationarity

• Deterministic policy

Policies

π(s) = a
ActionsStates

s0

s1

s2

a0

a1

a2

• Deterministic policy

Policies

π(s) = a
ActionsStates

s0

s1

s2

a0

a1

a2

• Deterministic policy

Policies

π(s) = a
Actions

State Action

s0 a1

s1 a0

s2 a0

States

s0

s1

s2

a0

a1

a2

• Stochastic policy:

• where

• and

Policies

π(a |s)

∑
a∈𝓐(s)

π(a |s) = 1

π(a |s) ≥ 0

• Stochastic policy:

• where

• and

Policies

π(a |s)

∑
a∈𝓐(s)

π(a |s) = 1

π(a |s) ≥ 0 10%

20%

30%

40%

50%

60%

70%

Action

Up Down Left Right

S0 S1s0 s1

π(a |s)

• Stochastic policy:

• where

• and

Policies

π(a |s)

∑
a∈𝓐(s)

π(a |s) = 1

π(a |s) ≥ 0 10%

20%

30%

40%

50%

60%

70%

Action

Up Down Left Right

S0 S1s0 s1

π(a |s)

S

Left Right

Valid and invalid policies

S

Left Right

1: Left with 50% probability
o and
 Right with 50% probability

 L L R L R L R R R ...

Valid and invalid policies

S

Left Right

2: Alternate Left and Right

 L R L R L R L R L ...

1: Left with 50% probability
o and
 Right with 50% probability

 L L R L R L R R R ...

Valid and invalid policies

S

Left Right

2: Alternate Left and Right

 L R L R L R L R L ...

1: Left with 50% probability
o and
 Right with 50% probability

 L L R L R L R R R ...

Valid and invalid policies

Markov Property

Action-value functions
• An action-value function says how good it is to be in a state,

take an action, and thereafter follow a policy:

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

Action-value functions
• An action-value function says how good it is to be in a state,

take an action, and thereafter follow a policy:

time

sqπ(s, a){
qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• A policy is optimal if it maximizes the action-value function:

• Thus all optimal policies share the same optimal value function

• Given the optimal value function, it is easy to act optimally:

- we say that the optimal policy is greedy with respect to the
optimal value function

• There is always at least one deterministic optimal policy

Optimal Polices

“greedification”

qπ⋆
(s, a) ·= max

π
qπ(s, a) = q⋆(s, a)

π⋆(s) = arg max
a

q⋆(s, a)

π⋆

∀ s ∈ 𝒮, a ∈ 𝒜(s)

GridWorld Example

GridWorld Example

X

A1 A2

Y Z

Exercise: what's optimal?

X

A1 A2

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0

A1 A2

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1
A1 A2

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

A1 A2

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

A1 A2

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9

A1 A2

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9
vπ1

(X) = 1+0.9 * 0+(0.9)2 * 1+ . . .

A1 A2

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9

A1 A2

vπ1
(X) =

∞

∑
k=0

(0.9)2k
Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9

=
1

1 − 0.92
≈ 5.3

A1 A2

vπ1
(X) =

∞

∑
k=0

(0.9)2k
Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9

=
1

1 − 0.92
≈ 5.3

vπ2
(X) = 0+0.9 * 2+(0.9)2 * 0+ . . .

A1 A2

vπ1
(X) =

∞

∑
k=0

(0.9)2k
Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9

=
1

1 − 0.92
≈ 5.3

vπ2
(X) =

∞

∑
k=0

(0.9)2k+1 * 2

A1 A2

vπ1
(X) =

∞

∑
k=0

(0.9)2k
Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9

=
1

1 − 0.92
≈ 5.3

vπ2
(X) =

∞

∑
k=0

(0.9)2k+1 * 2

A1 A2

vπ1
(X) =

∞

∑
k=0

(0.9)2k

=
0.9

1 − 0.92
* 2 ≈ 9.5

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

X γ = 0
vπ1

(X) = 1

vπ2
(X) = 0

γ = 0.9

=
1

1 − 0.92
≈ 5.3

vπ2
(X) =

∞

∑
k=0

(0.9)2k+1 * 2

A1 A2

vπ1
(X) =

∞

∑
k=0

(0.9)2k

=
0.9

1 − 0.92
* 2 ≈ 9.5

Y Z

π1 (X) = A1 π2 (X) = A2

Exercise: what's optimal?

2 Deterministic
Policies

Brute-Force
Search

We can only directly solve small MDPs

2 Deterministic
Policies

Brute-Force
Search

Brute-Force
Search

|𝓐 ||𝓢| Deterministic
PoliciesA General MDP

We can only directly solve small MDPs

2 Deterministic
Policies

Brute-Force
Search

Brute-Force
Search

|𝓐 ||𝓢| Deterministic
PoliciesA General MDP

RL methods based on
Bellman Equations

We can only directly solve small MDPs

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

Must associate situations with actions

• Online and Incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationarity

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

Must associate situations with actions

• Online and Incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationarity

}Characteristics
of the problem

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

Must associate situations with actions

• Online and Incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationarity

}Characteristics
of the problem

}Characteristics
of solution/alg

Q-learning

Q-learning

Q-learning

Q-learning

Q-learning

Q-learning

• Q-learning converges (Watkins & Dayan 1992) — learning
long-term optimal behavior without any model of the
environment, for arbitrary MDPs!

Q-learning Q q⋆converges to

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

Must associate different actions with different situations

• Online and Incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationarity
}Characteristics

of solution/alg

Q-learning

Q-learning

| {z }
error term

Q-learning

targetz }| {

| {z }
error term

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

• We don’t have to wait!

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

• We don’t have to wait!

• Lets use qπ(next-state,next-action) as a replacement for Rt+2 + γRt+3 +
γ2Rt+4 …

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

• We don’t have to wait!

• Lets use qπ(next-state,next-action) as a replacement for Rt+2 + γRt+3 +
γ2Rt+4 …

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• We don’t have to wait!

• Lets use qπ(next-state,next-action) as a replacement for Rt+2 + γRt+3 +
γ2Rt+4 …

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• We don’t have to wait!

• Lets use qπ(next-state,next-action) as a replacement for Rt+2 + γRt+3 +
γ2Rt+4 …

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

qπ(s, a) = 𝔼π [Rt+1 + γqπ(St+1, At+1) ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

• We don’t have to wait!

• Lets use qπ(next-state,next-action) as a replacement for Rt+2 + γRt+3 +
γ2Rt+4 …

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

qπ(s, a) = 𝔼π [Rt+1 + γqπ(St+1, At+1) ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]
| {z }

use Q-learning’s estimate in its update

• We don’t have to wait!

• Lets use qπ(next-state,next-action) as a replacement for Rt+2 + γRt+3 +
γ2Rt+4 …

Bootstrapping: key idea in Q-learning and all
temporal-difference (TD) learning

• Q-learning update is based on the Bellman optimality equation:

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]

qπ(s, a) = 𝔼π [Rt+1 + γqπ(St+1, At+1) ∣ St = s, At = a]

q⇤(s, a) = E
h
Rt+1 + �max

a0
q⇤(St+1, a

0)
| {z }
Q-learning’s target for Q(St ,At)

��� St=s,At=a
i

q⋆(s, a) = 𝔼π [Rt+1 + γ max
a′

q⋆(St+1, a′) ∣ St = s, At = a]

• You might think we need a complete trajectory of rewards to estimate
values

qπ(s, a) ·= 𝔼π [Rt+1 + γRt+2 + γ2Rt+3 . . . ∣ St = s, At = a]
| {z }

use Q-learning’s estimate in its update

Bellman equations

• Define a relationship between the value of a state and the value of its possible
successor states

Bellman equations

• Define a relationship between the value of a state and the value of its possible
successor states

Bellman equations

= ∑
s′

∑
r

p(s′ , r |s, a)[r + γ∑
a′

π(a′ |s′)qπ(s′ , a′)]= qπ(s′ , a′)qπ(s, a)

• Define a relationship between the value of a state and the value of its possible
successor states

• There are Bellman Equations for vπ, v*, and q*

Bellman equations

= ∑
s′

∑
r

p(s′ , r |s, a)[r + γ∑
a′

π(a′ |s′)qπ(s′ , a′)]= qπ(s′ , a′)qπ(s, a)

• Define a relationship between the value of a state and the value of its possible
successor states

• There are Bellman Equations for vπ, v*, and q*

• Classical Dynamic Programming algorithms (planning), compute value
functions and optimal policies using Bellman Equations, given p (the model)

Bellman equations

= ∑
s′

∑
r

p(s′ , r |s, a)[r + γ∑
a′

π(a′ |s′)qπ(s′ , a′)]= qπ(s′ , a′)qπ(s, a)

• Define a relationship between the value of a state and the value of its possible
successor states

• There are Bellman Equations for vπ, v*, and q*

• Classical Dynamic Programming algorithms (planning), compute value
functions and optimal policies using Bellman Equations, given p (the model)

• Many algorithms in RL, like Q-learning, can be seen as approximately solving
the Bellman Equation with samples from the environment (model-free)

Bellman equations

= ∑
s′

∑
r

p(s′ , r |s, a)[r + γ∑
a′

π(a′ |s′)qπ(s′ , a′)]= qπ(s′ , a′)qπ(s, a)

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

Must associate different actions with different situations

Online and Incremental learning

• Need for trial and error, to explore as well as exploit

• Non-stationarity
}Characteristics

of solution/alg

The Exploration-Exploitation dilemma

• You cannot choose the action with the max value every time

- what if your estimates of qπ are wrong?

- you must try all the actions…an infinite number of times, in each
state!

The Exploration-Exploitation dilemma

• You cannot choose the action with the max value every time

- what if your estimates of qπ are wrong?

- you must try all the actions…an infinite number of times, in each
state!

• But, you can’t explore all the time

The Exploration-Exploitation dilemma

• You cannot choose the action with the max value every time

- what if your estimates of qπ are wrong?

- you must try all the actions…an infinite number of times, in each
state!

• But, you can’t explore all the time

• You must balance exploiting (picking what you think is the best), and
exploring (refining your estimates)

The Exploration-Exploitation dilemma

How does Q-learning handle exploration?

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., ε-greedy:

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., ε-greedy:

1 − ϵ

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., ε-greedy:

1 − ϵ

At = argmax
a

Q(St, a)

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., ε-greedy:

1 − ϵ

At = argmax
a

Q(St, a)

ϵ

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., ε-greedy:

1 − ϵ

At = argmax
a

Q(St, a)

ϵ

At = Random action

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

e.g., ε-greedy:

1 − ϵ

At = argmax
a

Q(St, a)

ϵ

At = Random action

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

dithering or undirected exploration

e.g., ε-greedy:

1 − ϵ

At = argmax
a

Q(St, a)

ϵ

At = Random action

How does Q-learning handle exploration?
Choose actions in any way, perhaps based on Q, such that all
actions are taken in all states (infinitely often in the limit)

- optimistic initial values
- R-max, MBIE
(require models)

dithering or undirected exploration

Off-policy learning

• Learning about the value of one policy while using another policy to
generate the trajectory

Off-policy learning

• Learning about the value of one policy while using another policy to
generate the trajectory

• Q-learning is off-policy:

- the agent learns about the value of its deterministic greedy policy

which gradually becomes optimal

- from data generated while behaving in a more exploratory manner

Off-policy learning

• Learning about the value of one policy while using another policy to
generate the trajectory

• Q-learning is off-policy:

- the agent learns about the value of its deterministic greedy policy

which gradually becomes optimal

- from data generated while behaving in a more exploratory manner

• Also useful for batch-RL, learning from demonstration, and parallel
learning (e.g., many value functions, many policies, option-models)

Off-policy learning

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

Must associate different actions with different situations

Online and Incremental learning

Need for trial and error, to explore as well as exploit

• Non-stationarity

Q-learning: learning never ends

Q-learning: learning never ends

Key characteristics of RL
Evaluative feedback (reward)

Delayed consequences

Must associate different actions with different situations

Online and Incremental learning

Need for trial and error, to explore as well as exploit

Non-stationarity

Bootstrapping
Randomization,

Off-policy

MDPs, value-
functions,
policies

Never-ending learning

Now how do we do this with approximation?

• In real world problems, tables of values would become intractably large

- sometimes the state-space is too large (e.g., Go)

- sometimes the state-space is continuous

• Instead using tables for our value functions, we will use parameterized
functions

• Frame learning these approximate value functions as a supervised
learning problem:

- new challenge balancing Generalisation and Discrimination

The need for approximation

• Represent the action-value function by a parameterized
function with parameters

• The approximator could be a NN, with the weights being the
parameters of the network

- or simply a linear weighting of fixed features

• For large applications, it is important that all computations scale
linearly with the number of parameters

Function approximation

̂q(s, a, w) ≈ q⋆(s, a) ≈ qπ(s, a)
w ∈ ℝn

• Represent the action-value function by a parameterized
function with parameters

• The approximator could be a NN, with the weights being the
parameters of the network

- or simply a linear weighting of fixed features

• For large applications, it is important that all computations scale
linearly with the number of parameters

Function approximation

̂q(s, a, w) ≈ q⋆(s, a) ≈ qπ(s, a)
w ∈ ℝn

Approximating qπ with an NN

…

weights

Approximating qπ with an NN

…
̂q(s, a0, w)

̂q(s, a1, w)

̂q(s, a2, w)

weights

Approximating qπ with an NN

…

a

̂q(s, a, w)

weights

State Action Q

F

F

F

F

F

s1

s2

s3

s4

s5

4

4

10

2

-4

Generalization: Updates to One State Affect the
Value of Other States

State Action Q

F

F

F

F

F

s1

s2

s3

s4

s5

-3

4

-1.7

2

-2

Generalization: Updates to One State Affect the
Value of Other States

State Action Q

F

F

F

F

F

s1

s2

s3

s4

s5

-3

4

-1.7

2

-2

Generalization: Updates to One State Affect the
Value of Other States

State Action Q

F

F

F

F

F

s1

s2

s3

s4

s5

-3

4

-1.7

2

-2

Generalization: Updates to One State Affect the
Value of Other States

Discrimination: The ability to make the value
of two states different

Discrimination: The ability to make the value
of two states different

High
Generalization

Low
Generalization

High DiscriminationLow Discrimination

Categorizing methods
based on Generalization and Discrimination

High
Generalization

Low
Generalization

Tabular
Methods

High DiscriminationLow Discrimination

Categorizing methods
based on Generalization and Discrimination

High
Generalization

Low
Generalization

Tabular
Methods

High DiscriminationLow Discrimination

Aggregate
All States

Categorizing methods
based on Generalization and Discrimination

High
Generalization

Low
Generalization

Tabular
Methods

*

High DiscriminationLow Discrimination

Aggregate
All States

Categorizing methods
based on Generalization and Discrimination

High
Generalization

Low
Generalization

Tabular
Methods

*

High DiscriminationLow Discrimination

Aggregate
All States

Categorizing methods
based on Generalization and Discrimination

• There is an obvious generalization of Q-learning to function
approximation (Watkins 1989)

• Consider the following objective function:

- and the update used in Q-learning with function approximation

Semi-gradient Q-learning

Δw = α(Rt+1 + γ max
a

̂q(St+1, a, wt) − ̂q(St, At, wt))
∂ ̂q(St, At, wt)

wt

ℒ(w) = 𝔼[(Rt+1 + γ max
a

̂q(St+1, a, w) − ̂q(St, At, w))
2

]

• There is an obvious generalization of Q-learning to function
approximation (Watkins 1989)

• Consider the following objective function:

- and the update used in Q-learning with function approximation

Semi-gradient Q-learning

Δw = α(Rt+1 + γ max
a

̂q(St+1, a, wt) − ̂q(St, At, wt))
∂ ̂q(St, At, wt)

wt

ℒ(w) = 𝔼[(Rt+1 + γ max
a

̂q(St+1, a, w) − ̂q(St, At, w))
2

]

• The target here depends on the w. It's like we ignored the gradient
of the value of the next state

TD + function approximation can lead to instability

• Q-learning can diverge

TD + function approximation can lead to instability

• Q-learning can diverge

• It is not because of control,

- nor exploration, greedification, or sampling

TD + function approximation can lead to instability

• Q-learning can diverge

• It is not because of control,

- nor exploration, greedification, or sampling

• It is not completely due to non-linear function approximation

TD + function approximation can lead to instability

• Q-learning can diverge

• It is not because of control,

- nor exploration, greedification, or sampling

• It is not completely due to non-linear function approximation

• Dynamic programming methods diverge with function approximation!

TD + function approximation can lead to instability

• Q-learning can diverge

• It is not because of control,

- nor exploration, greedification, or sampling

• It is not completely due to non-linear function approximation

• Dynamic programming methods diverge with function approximation!

• Even TD with linear function approximation can diverge!
(in off-policy prediction)

TD + function approximation can lead to instability

The deadly Triad

Function Approximation

Off-policy LearningBootstrapping

• Newish Gradient-TD methods (TDC, GQ, proximal-gradientTD) developed by Maei (2011)
and Mahadevan et al (2015) are sound with off-policy + function approximation

- limited practical experience

- basically unexplored with non-linear function approximation

• New methods to reduce variance in off-policy training (Re-Trace, V-trace, ABQ)

- can diverge

• Divergence with control and NN is a complex story (van Hasselt et al, 2018)

- its more likely with larger differences between the policies
(common in prioritized replay, sample-based planning, parallel learning)

- its more likely with larger networks ... both things we might want in our learning systems!

Algorithmic solutions to the Triad

http://www.incompleteideas.net/papers/maei-thesis-2011.pdf
https://people.cs.umass.edu/~mahadeva/papers/gtduai2015.pdf
https://arxiv.org/abs/1606.02647
https://arxiv.org/pdf/1802.01561.pdf
https://arxiv.org/abs/1702.03006
https://arxiv.org/abs/1812.02648

• Learned the world’s best player of Backgammon (Tesauro 1995)

• Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al 2006+)

• Widely used in the placement and selection of advertisements and pages on the
web (e.g., A-B tests)

• Used by Watson to make strategic decisions in Jeopardy!, beating the best human
players (IBM 2011)

• Achieved human-level performance on Atari games from pixel-level visual input, in
conjunction with deep learning (Deepmind 2015)

• AlphaGo to defeat the world’s best Go players (DeepMind, 2016, 2017), AlphaZero
to decisively defeat all in Go, chess, and shogi

Significant progress in the application of RL

The good and bad of simulations

• Simulations are great: they facilitate rapid progress, careful scientific
experimentation

The good and bad of simulations

• Simulations are great: they facilitate rapid progress, careful scientific
experimentation

• Simulations also allow us to cheat a bit:

- run on parallel copies of the environment

- easy to reset states, learn from death, ignore damage

- knowledge of the underlying dynamics of the world

The good and bad of simulations

• Simulations are great: they facilitate rapid progress, careful scientific
experimentation

• Simulations also allow us to cheat a bit:

- run on parallel copies of the environment

- easy to reset states, learn from death, ignore damage

- knowledge of the underlying dynamics of the world

• Lose focus on data efficiency, parameter sensitivity, exploration challenges

The good and bad of simulations

• Simulations are great: they facilitate rapid progress, careful scientific
experimentation

• Simulations also allow us to cheat a bit:

- run on parallel copies of the environment

- easy to reset states, learn from death, ignore damage

- knowledge of the underlying dynamics of the world

• Lose focus on data efficiency, parameter sensitivity, exploration challenges

• Many of the shortcuts we take in simulations are not possible on robots

The good and bad of simulations

We are not done!

(Henderson et al, 2018)

(Plappert et al, 2017)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�2000

�1000

0

1000

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (PPO, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�750

�500

�250

0

250

500

750

1000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Policy Network Activation)

tanh

relu

leaky relu

Figure 2: Significance of Policy Network Structure and Activation Functions PPO (left), TRPO (middle) and DDPG (right).

Figure 3: DDPG reward rescaling on HalfCheetah-v1, with and without layer norm.

activations. We find that usually ReLU or Leaky ReLU acti-
vations perform the best across environments and algorithms.
The effects are not consistent across algorithms or environ-
ments. This inconsistency demonstrates how interconnected
network architecture is to algorithm methodology. For exam-
ple, using a large network with PPO may require tweaking
other hyperparameters such as the trust region clipping or
learning rate to compensate for the architectural change4.
This intricate interplay of hyperparameters is one of the rea-
sons reproducing current policy gradient methods is so dif-
ficult. It is exceedingly important to choose an appropriate
architecture for proper baseline results. This also suggests a
possible need for hyperparameter agnostic algorithms—that
is algorithms that incorporate hyperparameter adaptation as
part of the design—such that fair comparisons can be made
without concern about improper settings for the task at hand.

Reward Scale
How can the reward scale affect results? Why is reward
rescaling used?

Reward rescaling has been used in several recent works
(Duan et al. 2016; Gu et al. 2016) to improve results for
DDPG. This involves simply multiplying the rewards gen-
erated from an environment by some scalar (r̂ = r�̂) for
training. Often, these works report using a reward scale
of �̂ = 0.1. In Atari domains, this is akin to clipping the
rewards to [0, 1]. By intuition, in gradient based methods
(as used in most deep RL) a large and sparse output scale
can result in problems regarding saturation and inefficiency
in learning (LeCun et al. 2012; Glorot and Bengio 2010;
Vincent, de Brébisson, and Bouthillier 2015). Therefore clip-
ping or rescaling rewards compresses the space of estimated

4We find that the KL divergence of updates with the large net-
work (400, 300) seen in Figure 2 is on average 33.52 times higher
than the KL divergence of updates with the (64, 64) network.

expected returns in action value function based methods such
as DDPG. We run a set of experiments using reward rescaling
in DDPG (with and without layer normalization) for insights
into how this aspect affects performance.

Results Our analysis shows that reward rescaling can have
a large effect (full experiment results can be found in the
supplemental material), but results were inconsistent across
environments and scaling values. Figure 3 shows one such ex-
ample where reward rescaling affects results, causing a failure
to learn in small settings below �̂ = 0.01. In particular, layer
normalization changes how the rescaling factor affects results,
suggesting that these impacts are due to the use of deep net-
works and gradient-based methods. With the value function
approximator tracking a moving target distribution, this can
potentially affect learning in unstable environments where
a deep Q-value function approximator is used. Furthermore,
some environments may have untuned reward scales (e.g.
the HumanoidStandup-v1 of OpenAI gym which can reach
rewards in the scale of millions). Therefore, we suggest that
this hyperparameter has the potential to have a large impact
if considered properly. Rather than rescaling rewards in some
environments, a more principled approach should be taken
to address this. An initial foray into this problem is made
in (van Hasselt et al. 2016), where the authors adaptively
rescale reward targets with normalized stochastic gradient,
but further research is needed.

Random Seeds and Trials
Can random seeds drastically alter performance? Can one
distort results by averaging an improper number of trials?

A major concern with deep RL is the variance in results due
to environment stochasticity or stochasticity in the learning
process (e.g. random weight initialization). As such, even
averaging several learning results together across totally dif-
ferent random seeds can lead to the reporting of misleading
results. We highlight this in the form of an experiment.

We are not done!

(Henderson et al, 2018)

(Plappert et al, 2017)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�2000

�1000

0

1000

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (PPO, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�750

�500

�250

0

250

500

750

1000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Policy Network Activation)

tanh

relu

leaky relu

Figure 2: Significance of Policy Network Structure and Activation Functions PPO (left), TRPO (middle) and DDPG (right).

Figure 3: DDPG reward rescaling on HalfCheetah-v1, with and without layer norm.

activations. We find that usually ReLU or Leaky ReLU acti-
vations perform the best across environments and algorithms.
The effects are not consistent across algorithms or environ-
ments. This inconsistency demonstrates how interconnected
network architecture is to algorithm methodology. For exam-
ple, using a large network with PPO may require tweaking
other hyperparameters such as the trust region clipping or
learning rate to compensate for the architectural change4.
This intricate interplay of hyperparameters is one of the rea-
sons reproducing current policy gradient methods is so dif-
ficult. It is exceedingly important to choose an appropriate
architecture for proper baseline results. This also suggests a
possible need for hyperparameter agnostic algorithms—that
is algorithms that incorporate hyperparameter adaptation as
part of the design—such that fair comparisons can be made
without concern about improper settings for the task at hand.

Reward Scale
How can the reward scale affect results? Why is reward
rescaling used?

Reward rescaling has been used in several recent works
(Duan et al. 2016; Gu et al. 2016) to improve results for
DDPG. This involves simply multiplying the rewards gen-
erated from an environment by some scalar (r̂ = r�̂) for
training. Often, these works report using a reward scale
of �̂ = 0.1. In Atari domains, this is akin to clipping the
rewards to [0, 1]. By intuition, in gradient based methods
(as used in most deep RL) a large and sparse output scale
can result in problems regarding saturation and inefficiency
in learning (LeCun et al. 2012; Glorot and Bengio 2010;
Vincent, de Brébisson, and Bouthillier 2015). Therefore clip-
ping or rescaling rewards compresses the space of estimated

4We find that the KL divergence of updates with the large net-
work (400, 300) seen in Figure 2 is on average 33.52 times higher
than the KL divergence of updates with the (64, 64) network.

expected returns in action value function based methods such
as DDPG. We run a set of experiments using reward rescaling
in DDPG (with and without layer normalization) for insights
into how this aspect affects performance.

Results Our analysis shows that reward rescaling can have
a large effect (full experiment results can be found in the
supplemental material), but results were inconsistent across
environments and scaling values. Figure 3 shows one such ex-
ample where reward rescaling affects results, causing a failure
to learn in small settings below �̂ = 0.01. In particular, layer
normalization changes how the rescaling factor affects results,
suggesting that these impacts are due to the use of deep net-
works and gradient-based methods. With the value function
approximator tracking a moving target distribution, this can
potentially affect learning in unstable environments where
a deep Q-value function approximator is used. Furthermore,
some environments may have untuned reward scales (e.g.
the HumanoidStandup-v1 of OpenAI gym which can reach
rewards in the scale of millions). Therefore, we suggest that
this hyperparameter has the potential to have a large impact
if considered properly. Rather than rescaling rewards in some
environments, a more principled approach should be taken
to address this. An initial foray into this problem is made
in (van Hasselt et al. 2016), where the authors adaptively
rescale reward targets with normalized stochastic gradient,
but further research is needed.

Random Seeds and Trials
Can random seeds drastically alter performance? Can one
distort results by averaging an improper number of trials?

A major concern with deep RL is the variance in results due
to environment stochasticity or stochasticity in the learning
process (e.g. random weight initialization). As such, even
averaging several learning results together across totally dif-
ferent random seeds can lead to the reporting of misleading
results. We highlight this in the form of an experiment.

We are not done!

(Henderson et al, 2018)

(Plappert et al, 2017)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�2000

�1000

0

1000

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (PPO, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�750

�500

�250

0

250

500

750

1000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Policy Network Activation)

tanh

relu

leaky relu

Figure 2: Significance of Policy Network Structure and Activation Functions PPO (left), TRPO (middle) and DDPG (right).

Figure 3: DDPG reward rescaling on HalfCheetah-v1, with and without layer norm.

activations. We find that usually ReLU or Leaky ReLU acti-
vations perform the best across environments and algorithms.
The effects are not consistent across algorithms or environ-
ments. This inconsistency demonstrates how interconnected
network architecture is to algorithm methodology. For exam-
ple, using a large network with PPO may require tweaking
other hyperparameters such as the trust region clipping or
learning rate to compensate for the architectural change4.
This intricate interplay of hyperparameters is one of the rea-
sons reproducing current policy gradient methods is so dif-
ficult. It is exceedingly important to choose an appropriate
architecture for proper baseline results. This also suggests a
possible need for hyperparameter agnostic algorithms—that
is algorithms that incorporate hyperparameter adaptation as
part of the design—such that fair comparisons can be made
without concern about improper settings for the task at hand.

Reward Scale
How can the reward scale affect results? Why is reward
rescaling used?

Reward rescaling has been used in several recent works
(Duan et al. 2016; Gu et al. 2016) to improve results for
DDPG. This involves simply multiplying the rewards gen-
erated from an environment by some scalar (r̂ = r�̂) for
training. Often, these works report using a reward scale
of �̂ = 0.1. In Atari domains, this is akin to clipping the
rewards to [0, 1]. By intuition, in gradient based methods
(as used in most deep RL) a large and sparse output scale
can result in problems regarding saturation and inefficiency
in learning (LeCun et al. 2012; Glorot and Bengio 2010;
Vincent, de Brébisson, and Bouthillier 2015). Therefore clip-
ping or rescaling rewards compresses the space of estimated

4We find that the KL divergence of updates with the large net-
work (400, 300) seen in Figure 2 is on average 33.52 times higher
than the KL divergence of updates with the (64, 64) network.

expected returns in action value function based methods such
as DDPG. We run a set of experiments using reward rescaling
in DDPG (with and without layer normalization) for insights
into how this aspect affects performance.

Results Our analysis shows that reward rescaling can have
a large effect (full experiment results can be found in the
supplemental material), but results were inconsistent across
environments and scaling values. Figure 3 shows one such ex-
ample where reward rescaling affects results, causing a failure
to learn in small settings below �̂ = 0.01. In particular, layer
normalization changes how the rescaling factor affects results,
suggesting that these impacts are due to the use of deep net-
works and gradient-based methods. With the value function
approximator tracking a moving target distribution, this can
potentially affect learning in unstable environments where
a deep Q-value function approximator is used. Furthermore,
some environments may have untuned reward scales (e.g.
the HumanoidStandup-v1 of OpenAI gym which can reach
rewards in the scale of millions). Therefore, we suggest that
this hyperparameter has the potential to have a large impact
if considered properly. Rather than rescaling rewards in some
environments, a more principled approach should be taken
to address this. An initial foray into this problem is made
in (van Hasselt et al. 2016), where the authors adaptively
rescale reward targets with normalized stochastic gradient,
but further research is needed.

Random Seeds and Trials
Can random seeds drastically alter performance? Can one
distort results by averaging an improper number of trials?

A major concern with deep RL is the variance in results due
to environment stochasticity or stochasticity in the learning
process (e.g. random weight initialization). As such, even
averaging several learning results together across totally dif-
ferent random seeds can lead to the reporting of misleading
results. We highlight this in the form of an experiment.

We are not done!

(Henderson et al, 2018)

(Plappert et al, 2017)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�2000

�1000

0

1000

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (PPO, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

�750

�500

�250

0

250

500

750

1000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Policy Network Activation)

tanh

relu

leaky relu

Figure 2: Significance of Policy Network Structure and Activation Functions PPO (left), TRPO (middle) and DDPG (right).

Figure 3: DDPG reward rescaling on HalfCheetah-v1, with and without layer norm.

activations. We find that usually ReLU or Leaky ReLU acti-
vations perform the best across environments and algorithms.
The effects are not consistent across algorithms or environ-
ments. This inconsistency demonstrates how interconnected
network architecture is to algorithm methodology. For exam-
ple, using a large network with PPO may require tweaking
other hyperparameters such as the trust region clipping or
learning rate to compensate for the architectural change4.
This intricate interplay of hyperparameters is one of the rea-
sons reproducing current policy gradient methods is so dif-
ficult. It is exceedingly important to choose an appropriate
architecture for proper baseline results. This also suggests a
possible need for hyperparameter agnostic algorithms—that
is algorithms that incorporate hyperparameter adaptation as
part of the design—such that fair comparisons can be made
without concern about improper settings for the task at hand.

Reward Scale
How can the reward scale affect results? Why is reward
rescaling used?

Reward rescaling has been used in several recent works
(Duan et al. 2016; Gu et al. 2016) to improve results for
DDPG. This involves simply multiplying the rewards gen-
erated from an environment by some scalar (r̂ = r�̂) for
training. Often, these works report using a reward scale
of �̂ = 0.1. In Atari domains, this is akin to clipping the
rewards to [0, 1]. By intuition, in gradient based methods
(as used in most deep RL) a large and sparse output scale
can result in problems regarding saturation and inefficiency
in learning (LeCun et al. 2012; Glorot and Bengio 2010;
Vincent, de Brébisson, and Bouthillier 2015). Therefore clip-
ping or rescaling rewards compresses the space of estimated

4We find that the KL divergence of updates with the large net-
work (400, 300) seen in Figure 2 is on average 33.52 times higher
than the KL divergence of updates with the (64, 64) network.

expected returns in action value function based methods such
as DDPG. We run a set of experiments using reward rescaling
in DDPG (with and without layer normalization) for insights
into how this aspect affects performance.

Results Our analysis shows that reward rescaling can have
a large effect (full experiment results can be found in the
supplemental material), but results were inconsistent across
environments and scaling values. Figure 3 shows one such ex-
ample where reward rescaling affects results, causing a failure
to learn in small settings below �̂ = 0.01. In particular, layer
normalization changes how the rescaling factor affects results,
suggesting that these impacts are due to the use of deep net-
works and gradient-based methods. With the value function
approximator tracking a moving target distribution, this can
potentially affect learning in unstable environments where
a deep Q-value function approximator is used. Furthermore,
some environments may have untuned reward scales (e.g.
the HumanoidStandup-v1 of OpenAI gym which can reach
rewards in the scale of millions). Therefore, we suggest that
this hyperparameter has the potential to have a large impact
if considered properly. Rather than rescaling rewards in some
environments, a more principled approach should be taken
to address this. An initial foray into this problem is made
in (van Hasselt et al. 2016), where the authors adaptively
rescale reward targets with normalized stochastic gradient,
but further research is needed.

Random Seeds and Trials
Can random seeds drastically alter performance? Can one
distort results by averaging an improper number of trials?

A major concern with deep RL is the variance in results due
to environment stochasticity or stochasticity in the learning
process (e.g. random weight initialization). As such, even
averaging several learning results together across totally dif-
ferent random seeds can lead to the reporting of misleading
results. We highlight this in the form of an experiment.

• Problems

- Prediction and control

- MDPs, Contextual-DP, Contextual Bandits, and simple Bandits

• Solutions

- Bootstrapping and Monte Carlo (unified by eligibility traces)

- Tabular and function approximation

- On-policy and off-policy

- Model-based and model-free

- Value-based and policy-based

- Primitive actions and temporal abstraction

The dimensions of RL

The dimensions of RL

