


Start recording …



Admin

• Please start picking topics & groups: ask me about projects!


• Who has not signed up for presentations?



It’s easy to do science with computers! 
It’s also easy to do something that only 

attempts to look like science
Let’s show that 

DreamDQN is a good 
idea



Science, roadmaps, issues, and instances

• Today is all about methodology for empirical RL research


• Methodology: a system of methods used in a particular area of study or 
activity."a methodology for investigating the concept of focal points”


• If have a clear and principled approach, you are likely to do good and valid 
research


• Contrasting example: “I have a vague idea for a new algorithm, prove it is 
better in AIGym”


• You have to have good intentions, a good environment, and a good plan your 
research is likely to give the desired outcomes: knowledge & understanding



There are many kinds of RL research

• Theory


• Application, system building & challenge problems: often results in insights 


• Algorithm development


• Problem formulations


• Cognitive theories


• Empirical study

Math


Engineering


Science



The two faces of Empirical Research in AI
• Empirical research here broadly means any activity where the primary contribution or 

utility is measured by experimental / numerical results


• By running experiments


• Dr Rainbow: the creative, excited passionate inventor


• Dr White: the careful, strict, never-satisfied scientist


• You have to be both


• There is no advice how to be Dr Rainbow—what ever leads to progress is OK


• Dr White does not trust Dr Rainbow, nor himself!!!


• But this does not mean Dr White’s work cannot be creative and innovative



We are in Computing Science doing RL research; we must follow the scientific 
method



Guidelines for empirical AI research

• Embrace a roadmap


• Define a set of solution constraints


• Identify open questions


• Make progress on a question


• Communicate at all stages


• This whole thing is an iterative process of refinement, and sometimes scrapping 
everything and starting over



Embrace a roadmap
• Defines your medium and long term goals: e.g.,


• A sketch of an AI Architecture


• Application or challenge problem that is out of reach for current methods


• Could just be a list of open problems


• A Roadmap changes all the time—it should


• It can be personal


• But its best used for communication and collaboration



Example roadmaps



Example roadmaps

Planning with a learned model (topic)


Why does distributional RL work? (question)


Online, incremental learning with NN function approximation


How to represent time inside the agent: recurrence and memory in state


Developing average reward learning algorithms


How should the agent act to balance many auxiliary losses


How do we manage hyper-parameters



In the beginning it makes a lot of 
sense to follow your advisors roadmap



Define a set of solutions constraints
• A roadmap defines a space of problems to investigate


• Solution constraints are constraints on the solution to your problems / constraints on the 
answers


• They sculpt how you approach each subproblem / question from your roadmap


• They depend on your ultimate goals—they are part of your roadmap


• e.g. 1: I am interested in linear complexity methods, with computation independent of 
span


• e.g. 2: I want to use all available computation and data to reach SOTA; huge nets, lots 
of T-bptt, and demonstrations from people are all OK


• There are times when you will use solution constraints that violate those of your roadmap 
to make progress on a particular question 



Identify Open Questions
• Given a roadmap and a set of solution constraints, we can pick off project sized questions/problems


• Good time to iterate your roadmap


• And you are not beholden to your roadmap


• An issue is a problem that can be stated as a research question (we like questions in science). E.g.,:


• Want to improve an existing solution according to some metric (speed)


• Higher-level challenge like make progress on exploration


• Study a specific phenomenon: French’s work on Catastrophic Interference, Multi-timescale 
Nexting in a Reinforcement Learning Robot


• Exploring unexpected results from prior work


• Remove an undesirable property (divergence with the Deadly Triad)

https://sites.ualberta.ca/~amw8/nexting.pdf
https://sites.ualberta.ca/~amw8/nexting.pdf
https://sites.ualberta.ca/~amw8/nexting.pdf
https://sites.ualberta.ca/~amw8/nexting.pdf


Minimal instances
• Ideally you can make a small problem (experiment) that represents the issue 

you are working on


• Solving that problem demonstrates progress on your issue


• These should be small; allow extensive experimentation and analysis


• There should be clear baselines—including ones that don’t fit your solution 
constraints:


• e.g., LSTD can solve the deadly triad, but requires quadratic computation



Minimal instances
• Sutton’s black and white world: need for tracking in partially observable tasks

http://www.incompleteideas.net/papers/SKS-07.pdf



Minimal instances
• Strehl and Littman’s work on river swim: need for persistent exploration 

https://ieeexplore.ieee.org/abstract/document/1374179?casa_token=diwCjuqafskAAAAA:X7GqWg8yM04MDfS0zAStXR5FAmkYOVIHm5d802P3uAINMSMipVzfON9VcRMjTPVYDwRUKBe1



Minimal instances
• Ghiassian’s Collision task: advantages of Emphatic methods 

https://arxiv.org/pdf/1811.02597.pdf



Make progress on a question
• There is no advice for solving problem :P


• But evaluating progress is where science and good experiments come in


• Your progress might take many different forms


• A first demonstration of something:


• First linear complexity off-policy TD method with FA (theory & solve Baird’s)


• Improved exploration on Pitfall!


• A new method that can adapt lambda of TD methods (theory and 
experimental evidence)



Progress might take many different forms …
• Performance comparable to baselines that do not respect solution constraints


• E.g.,


• Linear off-policy TD learning comparable to LSTD which is quadratic


• Recurrent learning system that achieves comparable performance to RNNs 
with truncated backdrop through time, but with less memory & compute


• Model-free exploration comparable to model-based approaches



Progress might take many different forms …
• Improvement over baselines that do respect solution constraints 


• E.g.,


• Off-policy learning with less variance than gradient TD methods


• Improving Performance in Reinforcement Learning by Breaking 
Generalization in Neural Networks.


• Improving step-size parameter adaption:  Meta-descent for online, 
continual prediction

http://ifaamas.org/Proceedings/aamas2020/pdfs/p438.pdf
http://ifaamas.org/Proceedings/aamas2020/pdfs/p438.pdf
https://sites.ualberta.ca/~amw8/adagain.pdf
https://sites.ualberta.ca/~amw8/adagain.pdf
https://sites.ualberta.ca/~amw8/adagain.pdf
https://sites.ualberta.ca/~amw8/adagain.pdf


Progress might take many different forms …
• New empirical insights 


• E.g.,


• Adapting behaviour via intrinsic reward: A survey and empirical study


• Prediction in Intelligence: An Empirical Comparison of Off-policy Algorithms 
on Robots 


• In all case, progress should feed back into your roadmap

https://sites.ualberta.ca/~amw8/bandit.pdf
https://sites.ualberta.ca/~amw8/robot_knowledge.pdf
https://sites.ualberta.ca/~amw8/robot_knowledge.pdf


Communicate all the time
• It’s never to early to present in a lab meeting, to your research group, etc


• Talk about the problem formulation and related work:


• Outcome: people help you find other refs and better formulations


• Talk about the basic approach & initial ideas for experiments:


• Outcome: people have other ideas and help you avoid wasting your time


• Talk about initial results and where you are stuck:


• Outcome: people suggest insightful experiments, ideas to unstick you


• Talks in general: 20mins to 1hr where several people think hard about your problem 
and offer free advice!



Communicate with yourself: 
Write in your notebook



Guidelines for empirical AI research

• Embrace a roadmap


• Define a set of solution constraints


• Identify open questions


• Make progress on a question


• Communicate at all stages


• This whole thing is an iterative process of refinement, and sometimes scrapping 
everything and starting over



Don’t conflate the question and solution
• Always clearly separate problem and solution


• Decide on a problem setting … fix it! Don’t change it


• Then think about solutions!


• (How does a roadmap help with this)


• Researchers often iterate the problem of study and the solution method:


• This results in making the problem fit your method (bad)


• And generally coming up with solutions that don’t match your original question


• e.g., developing new method for your concrete instance, finding it doesn’t work, 
and then making the concrete instance easier 



Finding answers / designing solutions
• Read a lot!


• Don’t ignore theory: as Csaba says: ask a theory guy sometimes they know 
the answer before you conduct the experiment


• Use implementations to understand the issue better!


• Be the agent


• Be paranoid: assume you have bugs, focus on correctness over performance 
at first


• Probe and test the agent: ask it questions


• Change one thing at a time!



Don’t get attached to your 
solution/approach/idea



Designing and running an experiment
• Write down hypothesis first


• Design the evaluation scheme and results pipeline


• Think of the configuration space:


• Hyper-parameters, runs (seeds), baselines, problem variations etc


• Make comparisons as comparable as possible: e.g., in policy evaluation all methods 
can use the exact same training data—don’t leave these things to chance


• Define success


• All these should match your solution constraints 



Think about the robustness of your approach 
• Do the basic conclusions hold in the face of:


• Noise: many seeds, many start states, sometimes noisy dynamics


• Environment and training setup: multiple environments reduce chances of 
overfitting 

• Architect design and architecture choices: different optimizers, feature 
construction methods, exploration mechanisms, hyper-parameters


• Domain overfitting in RL is a challenge (see https://www.cs.utexas.edu/
~pstone/Papers/bib2html-links/ADPRL11-shimon.pdf)


• This is why we have agent’s that can play Atari well, but are difficult to adjust 
to gridworlds and other small domains

https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ADPRL11-shimon.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ADPRL11-shimon.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ADPRL11-shimon.pdf


Thoughts on experiment workflow
• Write tests


• Run small experiments to probe correctness and if the idea has hope


• Use small benchmarks as a sanity check (e.g., mountain car)


• Use python notebooks as a lab book


• Log negative results


• Document everything in your Lab Book in your research journal


• Save everything: don’t get into the situation where plotting something different requires re-
running everything


• May require cleverness


• Don’t over-generalize the software: KISS, research code is throw-away code 



If your experiment produces a 
result you don’t expect …

STOP! DONT CHANGE 
ANYTHING

Figure out why your program 
produced that result first



Projects
• Let’s discuss potential projects


• From the doc:


• Evaluate representation methods (e.g. sparse, predictive, meta-learned and etc) in 
domain transfer tasks. 

• Testing the effect of nexting on generalization performance (task transfer). 

• Compare representations learned by RNNs vs Generate-and-Test on a semi-
stationary (fixed targets but input distribution changes over time) example (Daniel) 

https://docs.google.com/document/d/1xFDzBkHInGYcPKR6Xmg2otnhwP0GoV0Uh-s4azvzUEM

https://docs.google.com/document/d/1xFDzBkHInGYcPKR6Xmg2otnhwP0GoV0Uh-s4azvzUEM

