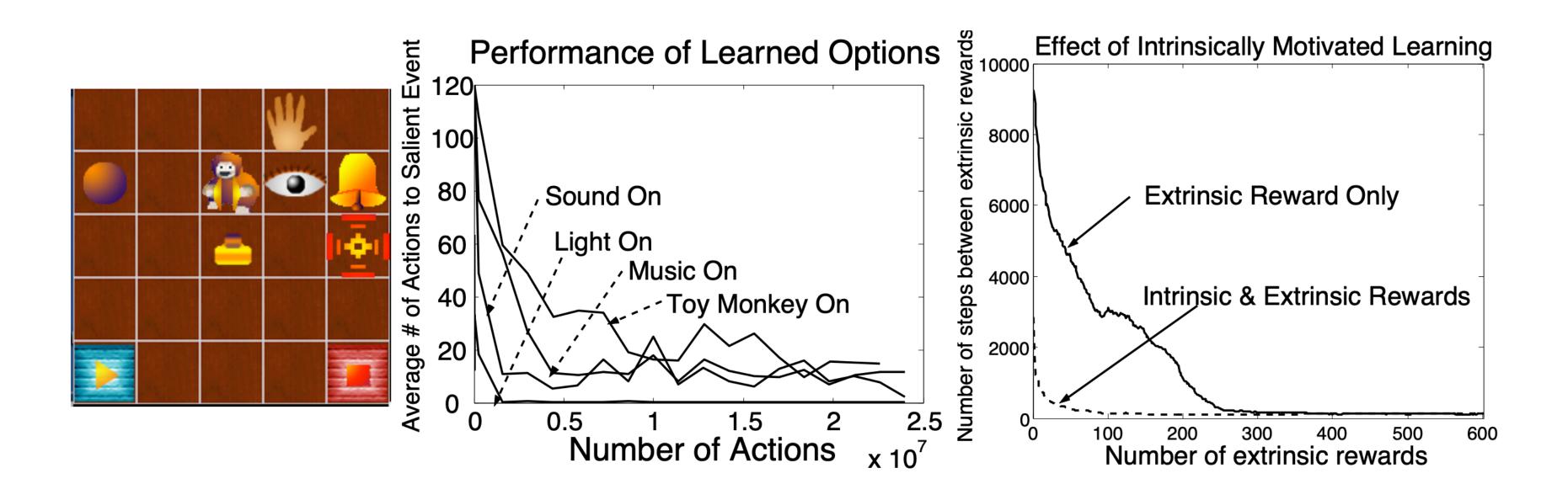
Intrinsically Motivated Reinforcement Learning

Satinder Singh

Computer Science & Eng. University of Michigan baveja@umich.edu

Andrew G. Barto Dept. of Computer Science University of Massachusetts barto@cs.umass.edu



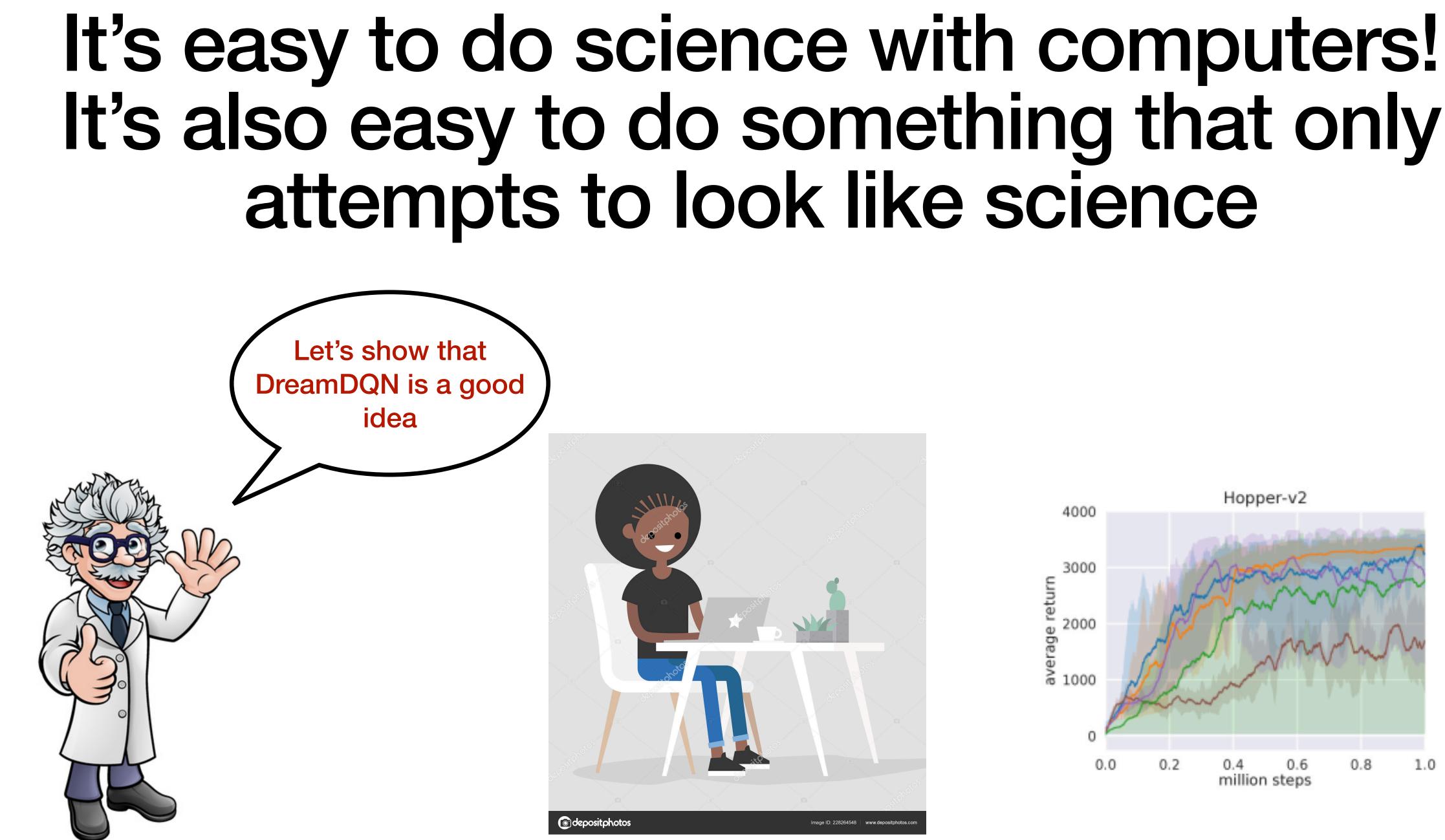
Nuttapong Chentanez

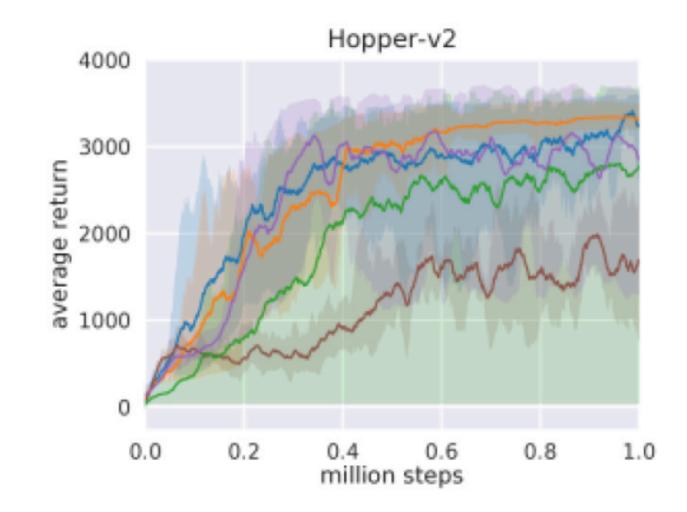
Computer Science & Eng. University of Michigan nchentan@umich.edu

Start recording ...

Admin

- Please start picking topics & groups: ask me about projects!
- Who has not signed up for presentations?





Science, roadmaps, issues, and instances

- Today is all about methodology for empirical RL research
- Methodology: a system of methods used in a particular area of study or activity."a methodology for investigating the concept of focal points"
- If have a clear and principled approach, you are likely to do good and valid research
 - Contrasting example: "I have a vague idea for a new algorithm, prove it is better in AIGym"
- You have to have good intentions, a good environment, and a good plan your research is likely to give the desired outcomes: knowledge & understanding

There are many kinds of RL research

- Theory
- Algorithm development
- Problem formulations
- Cognitive theories
- Empirical study

• Application, system building & challenge problems: often results in insights

Math Engineering

Science

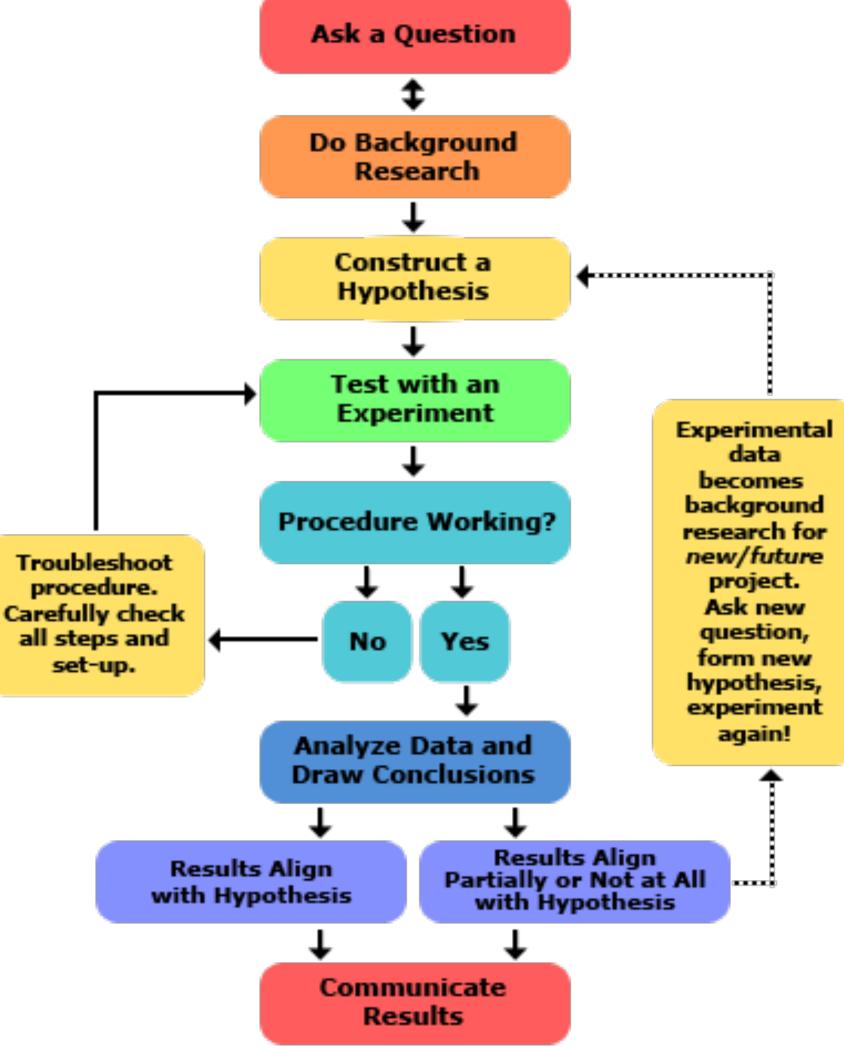
The two faces of Empirical Research in Al

- utility is measured by experimental / numerical results
 - By running experiments
- **Dr Rainbow:** the creative, excited passionate inventor
- **Dr White:** the careful, strict, never-satisfied scientist
- You have to be both
- There is no advice how to be Dr Rainbow what ever leads to progress is OK
- Dr White does not trust **Dr Rainbow**, nor himself!!!

Empirical research here broadly means any activity where the primary contribution or

But this does not mean Dr White's work cannot be creative and innovative

We are in Computing Science doing RL research; we must follow the scientific method



Guidelines for empirical Al research

- Embrace a roadmap
- Define a set of solution constraints
- Identify open questions
- Make progress on a question
- Communicate at all stages

everything and starting over

This whole thing is an iterative process of refinement, and sometimes scrapping

Embrace a roadmap

- Defines your medium and long term goals: e.g., \bullet
 - A sketch of an AI Architecture

 - Could just be a list of open problems
- A Roadmap changes all the time—it should
- It can be personal
- But its best used for communication and collaboration

Application or challenge problem that is out of reach for current methods

Example roadmaps



More *target* than road

state-update learning online non-linear func approximation

curation of models (keeping stats & being selective)

search control

Planning with a learned model

predictions

compositional

systematic datadirected discovery (constructivism)

knowledge rep'n: GVFs & option models? recognizers

planning with expectation models

exploration by curiosity

Example roadmaps

Planning with a learned model (topic) Why does distributional RL work? (question) Online, incremental learning with NN function approximation How to represent time inside the agent: recurrence and memory in state Developing average reward learning algorithms How should the agent act to balance many auxiliary losses How do we manage hyper-parameters

In the beginning it makes a lot of sense to follow your advisors roadmap

Define a set of solutions constraints

- A roadmap defines a space of problems to investigate
- Solution constraints are constraints on the solution to your problems / constraints on the answers
- They sculpt how you approach each subproblem / question from your roadmap
- They depend on your ultimate goals—they are part of your roadmap
 - e.g. 1: I am interested in linear complexity methods, with computation independent of span
 - e.g. 2: I want to use all available computation and data to reach SOTA; huge nets, lots of T-bptt, and demonstrations from people are all OK
- There are times when you will use solution constraints that violate those of your roadmap to make progress on a particular question

Identify Open Questions

- - Good time to iterate your roadmap
 - And you are not beholden to your roadmap
- - Want to improve an existing solution according to some metric (speed)
 - Higher-level challenge like make progress on exploration
 - Nexting in a Reinforcement Learning Robot
 - Exploring unexpected results from prior work
 - Remove an undesirable property (divergence with the Deadly Triad)

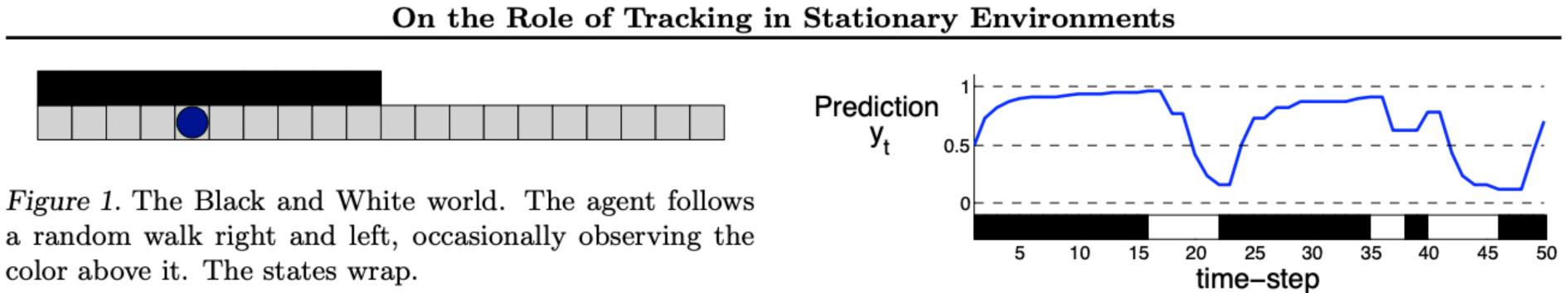
• Given a roadmap and a set of solution constraints, we can pick off project sized questions/problems

• An issue is a problem that can be stated as a research question (we like questions in science). E.g.,:

• Study a specific phenomenon: French's work on Catastrophic Interference, Multi-timescale

- Ideally you can make a small proble you are working on
- Solving that problem demonstrates progress on your issue
- These should be small; allow extensive experimentation and analysis
- There should be clear baselines—including ones that don't fit your solution constraints:
 - e.g., LSTD can solve the deadly triad, but requires quadratic computation

Ideally you can make a small problem (experiment) that represents the issue

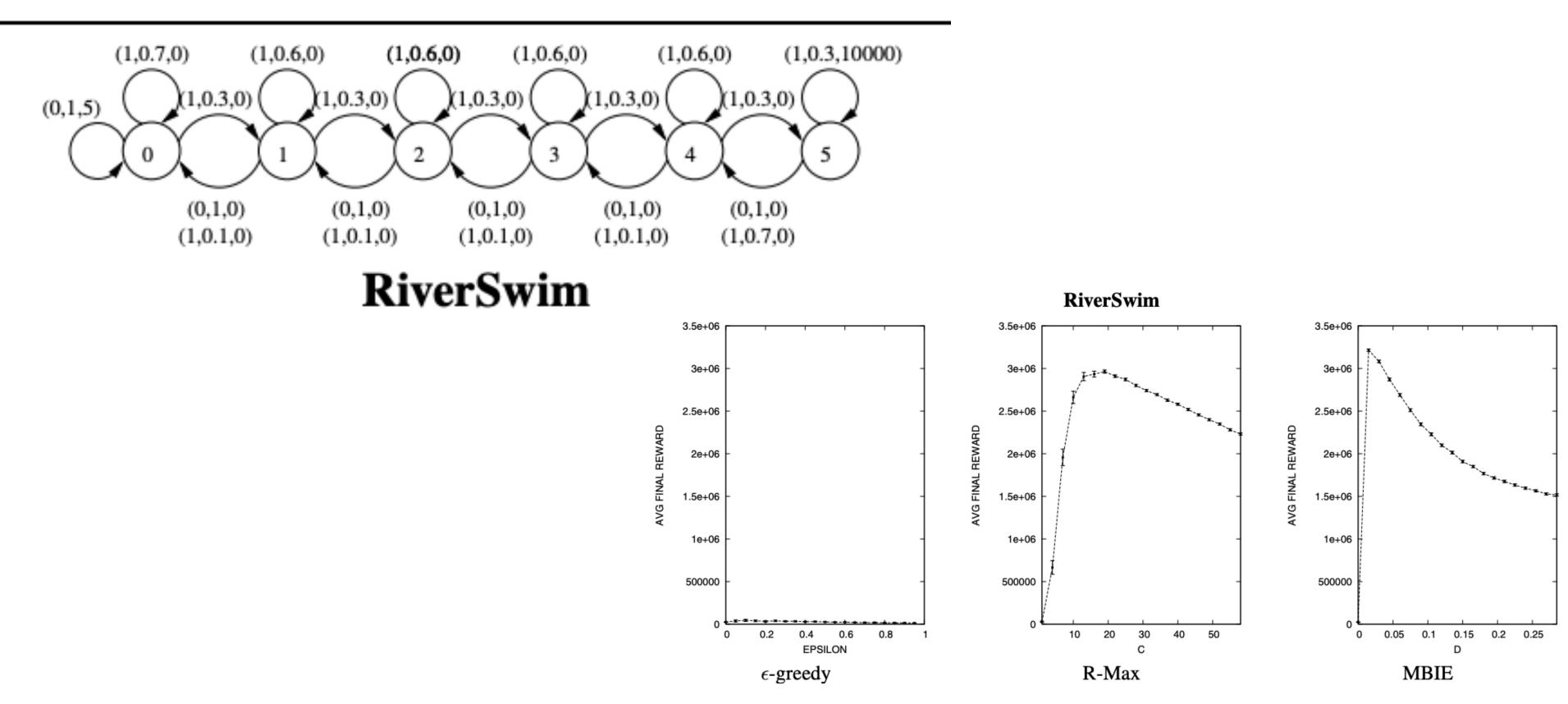


color above it. The states wrap.

Sutton's black and white world: need for tracking in partially observable tasks

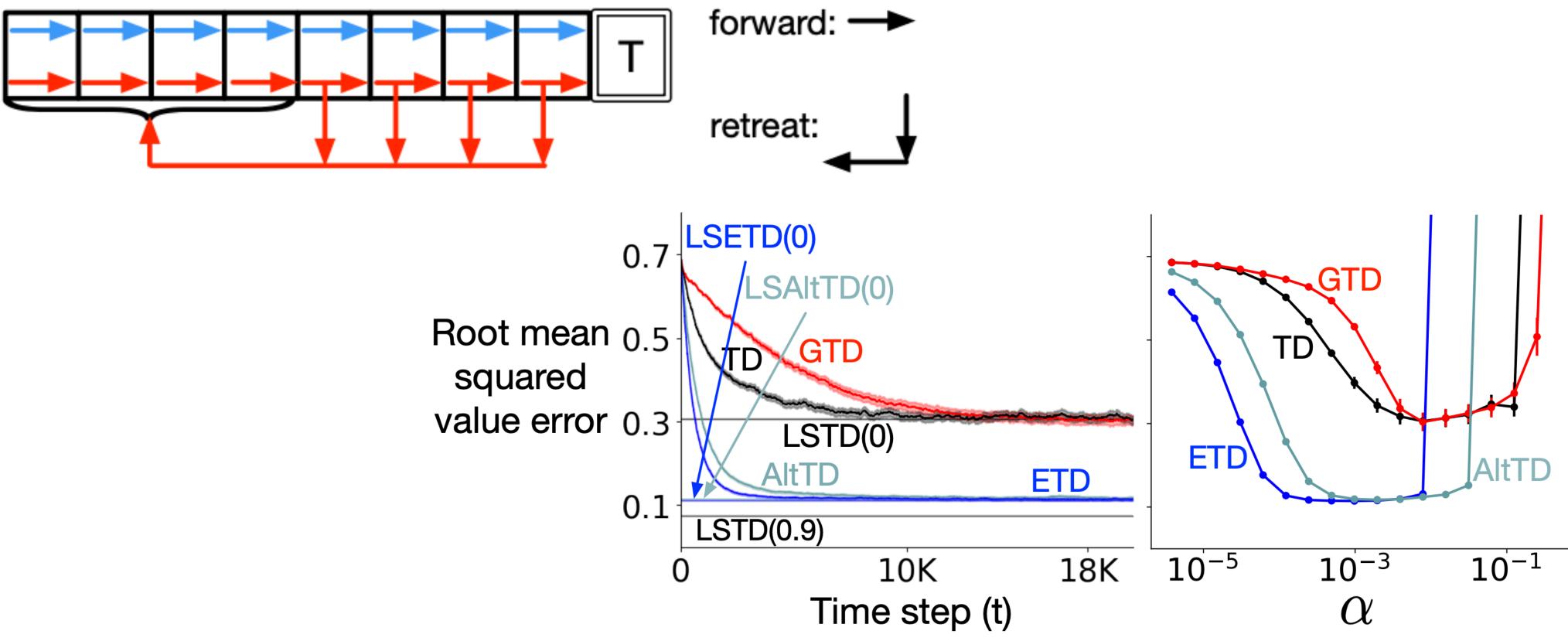
http://www.incompleteideas.net/papers/SKS-07.pdf

Strehl and Littman's work on river swim: need for persistent exploration



https://ieeexplore.ieee.org/abstract/document/1374179?casa_token=diwCjuqafskAAAAA:X7GqWg8yM04MDfS0zAStXR5FAmkYOVIHm5d802P3uAINMSMipVzfON9VcRMjTPVYDwRUKBe1

Ghiassian's Collision task: advantages of Emphatic methods



https://arxiv.org/pdf/1811.02597.pdf

Make progress on a question

- There is no advice for solving problem :P
- But evaluating progress is where science and good experiments come in
- Your progress might take many different forms
- A first demonstration of something:
 - First linear complexity off-policy TD method with FA (theory & solve Baird's)
 - Improved exploration on Pitfall!
 - A new method that can adapt lambda of TD methods (theory and experimental evidence)

Progress might take many different forms ...

- E.g.,

 - Model-free exploration comparable to model-based approaches

Performance comparable to baselines that do not respect solution constraints

• Linear off-policy TD learning comparable to LSTD which is quadratic

 Recurrent learning system that achieves comparable performance to RNNs with truncated backdrop through time, but with less memory & compute

Progress might take many different forms ...

- Improvement over baselines that do respect solution constraints
- E.g.,
 - Off-policy learning with less variance than gradient TD methods
 - Improving Performance in Reinforcement Learning by Breaking Generalization in Neural Networks.
 - Improving step-size parameter adaption: <u>Meta-descent for online</u>, <u>continual prediction</u>

Progress might take many different forms ...

- New empirical insights
- E.g.,

 - on Robots

• In all case, progress should feed back into your roadmap

<u>Adapting behaviour via intrinsic reward: A survey and empirical study</u>

• Prediction in Intelligence: An Empirical Comparison of Off-policy Algorithms

Communicate all the time

- It's never to early to present in a lab meeting, to your research group, etc
- Talk about the problem formulation and related work:
 - Outcome: people help you find other refs and better formulations
- Talk about the basic approach & initial ideas for experiments:
 - Outcome: people have other ideas and help you avoid wasting your time
- Talk about initial results and where you are stuck:
 - Outcome: people suggest insightful experiments, ideas to unstick you
- Talks in general: 20mins to 1hr where several people think hard about your problem and offer free advice!

Communicate with yourself: Write in your notebook

Guidelines for empirical Al research

- Embrace a roadmap
- Define a set of solution constraints
- Identify open questions
- Make progress on a question
- Communicate at all stages

everything and starting over

This whole thing is an iterative process of refinement, and sometimes scrapping

Don't conflate the question and solution

- Always clearly separate problem and solution
- Decide on a problem setting ... fix it! Don't change it
 - Then think about solutions!
 - (How does a roadmap help with this)
- Researchers often iterate the problem of study and the solution method:
 - This results in making the problem fit your method (bad)
 - And generally coming up with solutions that don't match your original question
 - e.g., developing new method for your concrete instance, finding it doesn't work, and then making the concrete instance easier

Finding answers / designing solutions

- Read a lot!
- the answer before you conduct the experiment
- Use implementations to understand the issue better!
- Be the agent
- at first
- Probe and test the agent: ask it questions
- Change one thing at a time!

Don't ignore theory: as Csaba says: ask a theory guy sometimes they know

Be paranoid: assume you have bugs, focus on correctness over performance

Don't get attached to your solution/approach/idea

Designing and running an experiment

- Write down hypothesis first \bullet
- Design the evaluation scheme and results pipeline
- Think of the configuration space:
 - Hyper-parameters, runs (seeds), baselines, problem variations etc
- can use the exact same training data—don't leave these things to chance
- Define success

All these should match your solution constraints

Make comparisons as comparable as possible: e.g., in policy evaluation all methods

Think about the robustness of your approach

- Do the basic conclusions hold in the face of:
 - Noise: many seeds, many start states, sometimes noisy dynamics
 - Environment and training setup: multiple environments reduce chances of overfitting
 - Architect design and architecture choices: different optimizers, feature construction methods, exploration mechanisms, hyper-parameters
- Domain overfitting in RL is a challenge (see <u>https://www.cs.utexas.edu/</u> <u>~pstone/Papers/bib2html-links/ADPRL11-shimon.pdf</u>)
- This is why we have agent's that can play Atari well, but are difficult to adjust to gridworlds and other small domains

Thoughts on experiment workflow

- Write tests
- Run small experiments to probe correctness and if the idea has hope
- Use small benchmarks as a sanity check (e.g., mountain car)
- Use python notebooks as a lab book
- Log negative results
- Document everything in your Lab Book in your research journal
- Save everything: don't get into the situation where plotting something different requires rerunning everything
 - May require cleverness
- Don't over-generalize the software: KISS, research code is throw-away code

If your experiment produces a result you don't expect ... **STOP! DONT CHANGE** ANYTHING

Figure out why your program produced that result first

Projects

• Let's discuss potential projects

- From the doc:
 - Evaluate representation methods (e.g. sparse, predictive, meta-learned and etc) in domain transfer tasks.
 - Testing the effect of nexting on generalization performance (task transfer).
 - Compare representations learned by RNNs vs Generate-and-Test on a semistationary (fixed targets but input distribution changes over time) example (Daniel)

