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Shaping: teaching animals via the method of successive approximation
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introduced for experiments with behavior-contingent reinforcement, though the experi-
ments and theories of those who use these two terms di↵er in a number of ways, some of
which we touch on below. We will exclusively use the term instrumental conditioning for
experiments in which reinforcement is contingent upon behavior. The roots of instrumen-
tal conditioning go back to experiments performed by the American psychologist Edward
Thorndike one hundred years before publication of the first edition of this book.

One of Thorndike’s puzzle boxes.
Reprinted from Thorndike, Animal Intelligence: An

Experimental Study of the Associative Processes in

Animals, The Psychological Review, Series of Mono-
graph Supplements II(4), Macmillan, New York, 1898.

Thorndike observed the behavior of cats
when they were placed in “puzzle boxes,”
such as the one at the right, from which
they could escape by appropriate actions.
For example, a cat could open the door
of one box by performing a sequence of
three separate actions: depressing a plat-
form at the back of the box, pulling a string
by clawing at it, and pushing a bar up or
down. When first placed in a puzzle box,
with food visible outside, all but a few of
Thorndike’s cats displayed “evident signs
of discomfort” and extraordinarily vigorous
activity “to strive instinctively to escape
from confinement” (Thorndike, 1898).

In experiments with di↵erent cats and
boxes with di↵erent escape mechanisms, Thorndike recorded the amounts of time each
cat took to escape over multiple experiences in each box. He observed that the time
almost invariably decreased with successive experiences, for example, from 300 seconds
to 6 or 7 seconds. He described cats’ behavior in a puzzle box like this:

The cat that is clawing all over the box in her impulsive struggle will probably
claw the string or loop or button so as to open the door. And gradually all the
other non-successful impulses will be stamped out and the particular impulse
leading to the successful act will be stamped in by the resulting pleasure,
until, after many trials, the cat will, when put in the box, immediately claw
the button or loop in a definite way. (Thorndike 1898, p. 13)

These and other experiments (some with dogs, chicks, monkeys, and even fish) led
Thorndike to formulate a number of “laws” of learning, the most influential being the
Law of E↵ect. This law describes what is generally known as learning by trial and
error. As we mentioned in Chapter 1, many aspects of the Law of E↵ect have generated
controversy, and its details have been modified over the years. Still the law—in one form
or another—expresses an enduring principle of learning.

Essential features of reinforcement learning algorithms correspond to features of animal
learning described by the Law of E↵ect. First, reinforcement learning algorithms are
selectional, meaning that they try alternatives and select among them by comparing their
consequences. Second, reinforcement learning algorithms are associative, meaning that
the alternatives found by selection are associated with particular situations, or states,
to form the agent’s policy. Like learning described by the Law of E↵ect, reinforcement
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A tale of two papers
The Good, the bad, and the ugly



Two papers about methodology and scholarship in RL

• Each paper focuses on a different sub community


• Classical batch supervised learning


• People who work in Continuous action RL, specifically Deep RL 
approaches


• Each paper has a different emphasis


• Overall trends and motivations in the community


• Whats wrong and how to do it better



889 citations between all three



Today’s focus is mostly about what is wrong

• Both papers focus on the most pressing problems


• They give specific examples—literally pointing to particular papers, 
codebases, statements, and experiments


• We will also talk about specific examples I have come across in RL


• These papers are a bit light on actionable fixes


• Next lecture we will discuss three proposed ways to do better 
experiments in RL



Troubling trends in ML (2018)
What we should be doing

• Researchers could have many goals:


• Theoretically characterize what is learnable


• Obtain understanding via rigorous experiments


• Build a high performance (or high accuracy) system


• Any paper should aspire to do one of the following:


• Provide understanding but not make claims not supported by the data


• Use experiments to rule out hypotheses


• Connect empirical claims with intuition and theory


• Use language and terminology to minimize misunderstanding, conflation, unsupported claims, and hype



Troubling trends in ML (2018)
What we see in the literature

• Failure to distinguish between speculation and explanation


• Failure to identify sources of gain (improvement) in experiments


• e.g., explaining architecture improvements vs of hyper-parameter tuning


• Using math to impress and confuse the reader


• Using language poorly: overload established terms or using fancy word with 
particular English meanings to suggest something about your algorithm


• e.g., The dreamer agent is curious about its world …



Troubling trends in ML (2018)
Why is this happening

• “Strong results excuse weak arguments”


• ML and RL is growing rapidly, these things happen during periods of growth


• Less qualified reviewers due to growth


• Way more lower quality submissions, more junior reviews proportionally


• Bad incentive structures


• These are symptoms of our success, not the cause of success


• Flawed papers get thousands of citations



Troubling trends in ML (2018)
The consequences

• Regardless of the reasons we should all care because ML is being deployed in the 
real world, and thus our papers are read by non-scientists too:


• Students, application engineers, policy-makers, journalists


• We risk lab shutdowns, erosion of public and government trust


• In psychology, poor empirical standards have eroded public trust


• Even in AI this is an old and cyclic problem:


• “Dermott (in 1976) chastised the AI community for abandoning self-discipline, 
warning prophetically that `if we can’t criticize ourselves, someone else will save 
us the trouble’.”



Disclaimers
This was written by insiders

• No students were hurt in the making of this paper



Explanation vs Speculation
Don’t pretend they are the same

• Example covariate shift: “It is well-known that a deep neural network is very hard to 
optimize due to the internal-covariate-shift problem.”


• In the original paper this was an intuitive concept that was never technically 
defined nor was batch normalization ever clearly demonstrated to mitigate it


• Later work suggested that this explanation was not correct


• But the myth persists 


• More generally claims without an experiment to support them


• Introducing terms that appear technical (but lack definition) and then using them to 
define other things



Explanation vs Speculation
Example from RL

• “In this work we show that an algorithm that supports continual learning—
which takes inspiration from neurobiological models of synaptic consolidation
—can be combined with deep neural networks to achieve successful 
performance in a range of challenging domains. In doing so, we demonstrate 
that current neurobiological theories concerning synaptic consolidation do 
indeed scale to large-scale learning systems. This provides prima facie 
evidence that these principles may be fundamental aspects of learning and 
memory in the brain”



Motivation, speculation and explanation can all be used
With care

• Tell the reader when you are motivating your ideas for outside inspirations


• Tell the reader when you are speculating


• Paper gives a nice example of how one paper talks at length about how dropout 
might be inspired by sexual reproduction


• Another example involves conveying uncertainty:


• “Although such recommendations come. . . from years of experimentation and to 
some extent mathematical justification, they should be challenged. They constitute 
a good starting point. . . but very often have not been formally validated, leaving 
open many questions that can be answered either by theoretical analysis or by 
solid comparative experimental work”



Failure to identify sources of empirical gains
Do you really understand what is going on?

• Complex architectures and models are popular


• Advances often come from: simplifications, unifications, new problem 
formulations, and empirical insights


• Often advances come from the follow recipe, add:


• Optimization heuristics, hyper-parameter tuning, data preprocessing, minor 
architecture changes, recent fancy algorithm adapted to your new environment


• Outcome: SOTA performance!!


• Sometimes all these parts are needed, sometimes not. It’s our job to figure it out



Failure to identify sources of empirical gains
The mistakes
• Many tweets, tricks, and algorithmic changes but no ablations, not parameter studies


• If only one of those things matters, but you don’t clarify which thing matters you get credit for $k$ novel 
contributions!!


• The opposite is true: they didn’t do enough work!


• Example from the paper: claimed neural net architecture changes were not key for performance, it was 
hyper-parameter tuning


• Examples from RL: 


• Agent57: best across all Atari games compared to R2D2, NGU, MuZero…


• Using dynamic discounting, adjusting T in T-BPTT, intrinsic rewards, new network architecture, meta-
controller…all built on top of NGU…which combines UVFAs, re-trace, Double Q-learning, intrinsic 
rewards, many parallel exploration policies ….


• Some ablations…but not tuning of the ablations  



There are many ways to understand the gains
This often happens in followup work

• Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How 
does batch normalization help optimization? (no, it is not about internal 
covariate shift) 


• Implementation details matter: https://arxiv.org/abs/2005.12729


• Action dependent baselines don’t do what you think: http://
proceedings.mlr.press/v80/tucker18a.html


• Simple linear baselines are SOTA in AIGym: https://arxiv.org/abs/1703.02660

https://arxiv.org/abs/2005.12729
http://proceedings.mlr.press/v80/tucker18a.html
http://proceedings.mlr.press/v80/tucker18a.html
http://proceedings.mlr.press/v80/tucker18a.html
http://proceedings.mlr.press/v80/tucker18a.html


Mathiness
Paper needs more theory

• Sutton et al’s Emphatic TD paper was rejected because the prose did no follow the usual 
lemma, theorem flow


• I have had papers rejected because the reviewers thought the theory was not interesting 
because the proof was not complex—they didn’t even care about the statements


• Theory and formalism is an essential tool for expressing complex things clearly and 
compactly


• See philosophy …


• Math and theory should aid the reader in understanding the paper, not the opposite


• Using unnecessary theory or math is like using complex (big) words or phrases to sound 
impressive



Mathiness
Theory can be used for evil too

• Weak arguments, bad ideas, weak empirical evidence propped up by complex math


• Spurious theorems: 


• that don’t support the main ideas of the paper


• prove stability or convergence in a setting of little interest—assumptions too restrictive  


• Famous example: paper introducing the Adam optimizer


• Empirical paper with strong empirical support for the new method


• Including a convergence proof—that turned out to be wrong


• Imprecise statements that suggest formal backing, other via citations



Poor use of language
Suggestive definitions

• Introduce a new technical term with a word that has an English meaning that is strongly 
suggestive of what you want the reader to think about your agent


• “Curiosity Agent”, “Dreaming”


• Using such words to describe agent performance:


• “Human-level”, “super-human”: false sense of current abilities—only true on games it 
was trained on


• Popular articles continue to characterize modern image classifiers as “surpassing 
human abilities and effectively proving that bigger data leads to better decisions”


• In practice you can make tiny changes to a stop sign and the agent will classify it as  
“40 MPH”



Poor use of language
Overloading

• Changing the established meaning of a technical term E.g.: 


• calling every Q-learning agent DQN


• Generative models: models of the input distribution p(x) or the joint p(x,y)


• Not any model that produces realistic-looking structured data


• And the opposite can happen, new terms introduced:


• Artificial General Intelligence (AGI) vs Artificial Intelligence (AI)



Poor use of language
Suitcase Words

• Words that are use to refer to a broad range or collection of ideas


• Coined by Minsky (one of the creators of Reinforcement Learning)


• Words with no generally agreed-upon meaning


• Examples specific to RL:


• “Model”: is it an estimate of the one step dynamics or just any NN?


• “Optimizer”: step-size adaption algorithm? Concept form math? Name from tensorflow?


• Not using language and notation to differentiate General Value Functions (GVF) and 
approximate learned GVFs



Deep RL that Matters
What is going on in AIGym and continuous control?

• Focused on continuous action, policy gradient methods


• Critical evaluation of current empirical practices


• Critical evaluation of repeatability, stability, and general usefulness of current 
methods 



Deep RL that Matters
What is going on in AIGym and continuous control?

• AIGym domains require control of simulated robots with many degrees of 
freedom and high-dimensional inputs (joint angles and velocities)


• Motivated by conflicting empirical results found in the literature


• Reproducibility seems low priority and difficult


• Focused on continuous action, policy gradient methods


• Critical evaluation of current empirical practices


• Critical evaluation of repeatability, stability, and general usefulness of current 
methods 



Dealing with hyper-parameters
…or not

• Has a big impact on performance of baselines


• Ranges of search (often informal) are not typically reported



Many design choices have significant 
impact on the performance of PG 

learners



Network architectures matter
…as do activation functions
• Dramatic performance differences are possible


• These things are interconnected and don’t generalize across algorithms and 
environment


• PPO with a large network may require tuning the trust region clipping or 
learning rate to compensate for the bigger net 


•
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Figure 2: Significance of Policy Network Structure and Activation Functions PPO (left), TRPO (middle) and DDPG (right).

Figure 3: DDPG reward rescaling on HalfCheetah-v1, with and without layer norm.

activations. We find that usually ReLU or Leaky ReLU acti-
vations perform the best across environments and algorithms.
The effects are not consistent across algorithms or environ-
ments. This inconsistency demonstrates how interconnected
network architecture is to algorithm methodology. For exam-
ple, using a large network with PPO may require tweaking
other hyperparameters such as the trust region clipping or
learning rate to compensate for the architectural change4.
This intricate interplay of hyperparameters is one of the rea-
sons reproducing current policy gradient methods is so dif-
ficult. It is exceedingly important to choose an appropriate
architecture for proper baseline results. This also suggests a
possible need for hyperparameter agnostic algorithms—that
is algorithms that incorporate hyperparameter adaptation as
part of the design—such that fair comparisons can be made
without concern about improper settings for the task at hand.

Reward Scale
How can the reward scale affect results? Why is reward
rescaling used?

Reward rescaling has been used in several recent works
(Duan et al. 2016; Gu et al. 2016) to improve results for
DDPG. This involves simply multiplying the rewards gen-
erated from an environment by some scalar (r̂ = r�̂) for
training. Often, these works report using a reward scale
of �̂ = 0.1. In Atari domains, this is akin to clipping the
rewards to [0, 1]. By intuition, in gradient based methods
(as used in most deep RL) a large and sparse output scale
can result in problems regarding saturation and inefficiency
in learning (LeCun et al. 2012; Glorot and Bengio 2010;
Vincent, de Brébisson, and Bouthillier 2015). Therefore clip-
ping or rescaling rewards compresses the space of estimated

4We find that the KL divergence of updates with the large net-
work (400, 300) seen in Figure 2 is on average 33.52 times higher
than the KL divergence of updates with the (64, 64) network.

expected returns in action value function based methods such
as DDPG. We run a set of experiments using reward rescaling
in DDPG (with and without layer normalization) for insights
into how this aspect affects performance.

Results Our analysis shows that reward rescaling can have
a large effect (full experiment results can be found in the
supplemental material), but results were inconsistent across
environments and scaling values. Figure 3 shows one such ex-
ample where reward rescaling affects results, causing a failure
to learn in small settings below �̂ = 0.01. In particular, layer
normalization changes how the rescaling factor affects results,
suggesting that these impacts are due to the use of deep net-
works and gradient-based methods. With the value function
approximator tracking a moving target distribution, this can
potentially affect learning in unstable environments where
a deep Q-value function approximator is used. Furthermore,
some environments may have untuned reward scales (e.g.
the HumanoidStandup-v1 of OpenAI gym which can reach
rewards in the scale of millions). Therefore, we suggest that
this hyperparameter has the potential to have a large impact
if considered properly. Rather than rescaling rewards in some
environments, a more principled approach should be taken
to address this. An initial foray into this problem is made
in (van Hasselt et al. 2016), where the authors adaptively
rescale reward targets with normalized stochastic gradient,
but further research is needed.

Random Seeds and Trials
Can random seeds drastically alter performance? Can one
distort results by averaging an improper number of trials?

A major concern with deep RL is the variance in results due
to environment stochasticity or stochasticity in the learning
process (e.g. random weight initialization). As such, even
averaging several learning results together across totally dif-
ferent random seeds can lead to the reporting of misleading
results. We highlight this in the form of an experiment.



Reward scaling
…as do activation functions
• Multiplying the reward by a scalar during training


• Big effect but not consistent: sometimes failure to learn


• Neural Nets don’t like large magnitude targets (also the motivation for clipping 
in DQN)


• More principle approaches like PopArt (van Hasselt, 2016)Figure 2: Significance of Policy Network Structure and Activation Functions PPO (left), TRPO (middle) and DDPG (right).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

0

1000

2000

3000

4000

5000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Reward Scale, Layer Norm)

rs=1e-4

rs=1e-3

rs=1e-2

rs=1e-1

rs=1

rs=10

rs=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ⇥106

0

1000

2000

3000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Reward Scale, No Layer Norm)

rs=1e-4

rs=1e-3

rs=1e-2

rs=1e-1

rs=1

rs=10

rs=100

Figure 3: DDPG reward rescaling on HalfCheetah-v1, with and without layer norm.

activations. We find that usually ReLU or Leaky ReLU acti-
vations perform the best across environments and algorithms.
The effects are not consistent across algorithms or environ-
ments. This inconsistency demonstrates how interconnected
network architecture is to algorithm methodology. For exam-
ple, using a large network with PPO may require tweaking
other hyperparameters such as the trust region clipping or
learning rate to compensate for the architectural change4.
This intricate interplay of hyperparameters is one of the rea-
sons reproducing current policy gradient methods is so dif-
ficult. It is exceedingly important to choose an appropriate
architecture for proper baseline results. This also suggests a
possible need for hyperparameter agnostic algorithms—that
is algorithms that incorporate hyperparameter adaptation as
part of the design—such that fair comparisons can be made
without concern about improper settings for the task at hand.

Reward Scale
How can the reward scale affect results? Why is reward
rescaling used?

Reward rescaling has been used in several recent works
(Duan et al. 2016; Gu et al. 2016) to improve results for
DDPG. This involves simply multiplying the rewards gen-
erated from an environment by some scalar (r̂ = r�̂) for
training. Often, these works report using a reward scale
of �̂ = 0.1. In Atari domains, this is akin to clipping the
rewards to [0, 1]. By intuition, in gradient based methods
(as used in most deep RL) a large and sparse output scale
can result in problems regarding saturation and inefficiency
in learning (LeCun et al. 2012; Glorot and Bengio 2010;
Vincent, de Brébisson, and Bouthillier 2015). Therefore clip-
ping or rescaling rewards compresses the space of estimated

4We find that the KL divergence of updates with the large net-
work (400, 300) seen in Figure 2 is on average 33.52 times higher
than the KL divergence of updates with the (64, 64) network.

expected returns in action value function based methods such
as DDPG. We run a set of experiments using reward rescaling
in DDPG (with and without layer normalization) for insights
into how this aspect affects performance.

Results Our analysis shows that reward rescaling can have
a large effect (full experiment results can be found in the
supplemental material), but results were inconsistent across
environments and scaling values. Figure 3 shows one such ex-
ample where reward rescaling affects results, causing a failure
to learn in small settings below �̂ = 0.01. In particular, layer
normalization changes how the rescaling factor affects results,
suggesting that these impacts are due to the use of deep net-
works and gradient-based methods. With the value function
approximator tracking a moving target distribution, this can
potentially affect learning in unstable environments where
a deep Q-value function approximator is used. Furthermore,
some environments may have untuned reward scales (e.g.
the HumanoidStandup-v1 of OpenAI gym which can reach
rewards in the scale of millions). Therefore, we suggest that
this hyperparameter has the potential to have a large impact
if considered properly. Rather than rescaling rewards in some
environments, a more principled approach should be taken
to address this. An initial foray into this problem is made
in (van Hasselt et al. 2016), where the authors adaptively
rescale reward targets with normalized stochastic gradient,
but further research is needed.

Random Seeds and Trials
Can random seeds drastically alter performance? Can one
distort results by averaging an improper number of trials?

A major concern with deep RL is the variance in results due
to environment stochasticity or stochasticity in the learning
process (e.g. random weight initialization). As such, even
averaging several learning results together across totally dif-
ferent random seeds can lead to the reporting of misleading
results. We highlight this in the form of an experiment.



Do seeds and number of runs matter?
Of course they do
• Neural networks require particular randomness to learn


• The environment, init, and policy can all be stochastic 


• How many runs to we need? 
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Figure 5: TRPO on HalfCheetah-v1 using the same hyperpa-
rameter configurations averaged over two sets of 5 different
random seeds each. The average 2-sample t-test across entire
training distribution resulted in t = �9.0916, p = 0.0016.

Results We perform 10 experiment trials, for the same
hyperparameter configuration, only varying the random seed
across all 10 trials. We then split the trials into two sets of
5 and average these two groupings together. As shown in
Figure 5, we find that the performance of algorithms can
be drastically different. We demonstrate that the variance
between runs is enough to create statistically different dis-
tributions just from varying random seeds. Unfortunately, in
recent reported results, it is not uncommon for the top-N tri-
als to be selected from among several trials (Wu et al. 2017;
Mnih et al. 2016) or averaged over only small number of tri-
als (N < 5) (Gu et al. 2017; Wu et al. 2017). Our experiment
with random seeds shows that this can be potentially mislead-
ing. Particularly for HalfCheetah, it is possible to get learning
curves that do not fall within the same distribution at all, just
by averaging different runs with the same hyperparameters,
but different random seeds. While there can be no specific
number of trials specified as a recommendation, it is possible
that power analysis methods can be used to give a general
idea to this extent as we will discuss later. However, more
investigation is needed to answer this open problem.

Environments
How do the environment properties affect variability in re-
ported RL algorithm performance?

To assess how the choice of evaluation environment can af-
fect the presented results, we use our aforementioned default
set of hyperparameters across our chosen testbed of algo-
rithms and investigate how well each algorithm performs
across an extended suite of continuous control tasks. For
these experiments, we use the following environments from
OpenAI Gym: Hopper-v1, HalfCheetah-v1, Swimmer-v1 and
Walker2d-v1. The choice of environment often plays an im-
portant role in demonstrating how well a new proposed algo-
rithm performs against baselines. In continuous control tasks,
often the environments have random stochasticity, shortened
trajectories, or different dynamic properties. We demonstrate
that, as a result of these differences, algorithm performance
can vary across environments and the best performing algo-
rithm across all environments is not always clear. Thus it is
increasingly important to present results for a wide range of

environments and not only pick those which show a novel
work outperforming other methods.

Results As shown in Figure 4, in environments with sta-
ble dynamics (e.g. HalfCheetah-v1), DDPG outperforms all
other algorithsm. However, as dynamics become more unsta-
ble (e.g. in Hopper-v1) performance gains rapidly diminish.
As DDPG is an off-policy method, exploration noise can
cause sudden failures in unstable environments. Therefore,
learning a proper Q-value estimation of expected returns is
difficult, particularly since many exploratory paths will result
in failure. Since failures in such tasks are characterized by
shortened trajectories, a local optimum in this case would be
simply to survive until the maximum length of the trajectory
(corresponding to one thousand timesteps and similar reward
due to a survival bonus in the case of Hopper-v1). As can be
seen in Figure 4, DDPG with Hopper does exactly this. This
is a clear example where showing only the favourable and sta-
ble HalfCheetah when reporting DDPG-based experiments
would be unfair.

Furthermore, let us consider the Swimmer-v1 environment
shown in Figure 4. Here, TRPO significantly outperforms
all other algorithms. Due to the dynamics of the water-like
environment, a local optimum for the system is to curl up and
flail without proper swimming. However, this corresponds
to a return of ⇠130. By reaching a local optimum, learning
curves can indicate successful optimization of the policy over
time, when in reality the returns achieved are not qualitatively
representative of learning the desired behaviour, as demon-
strated in video replays of the learned policy5. Therefore,
it is important to show not only returns but demonstrations
of the learned policy in action. Without understanding what
the evaluation returns indicate, it is possible that misleading
results can be reported which in reality only optimize local
optima rather than reaching the desired behaviour.

Codebases
Are commonly used baseline implementations comparable?

In many cases, authors implement their own versions of base-
line algorithms to compare against. We investigate the Ope-
nAI baselines implementation of TRPO as used in (Schulman
et al. 2017), the original TRPO code (Schulman et al. 2015a),
and the rllab (Duan et al. 2016) Tensorflow implementation of
TRPO. We also compare the rllab Theano (Duan et al. 2016),
rllabplusplus (Gu et al. 2016), and OpenAI baselines (Plap-
pert et al. 2017) implementations of DDPG. Our goal is to
draw attention to the variance due to implementation details
across algorithms. We run a subset of our architecture experi-
ments as with the OpenAI baselines implementations using
the same hyperparameters as in those experiments6.

Results We find that implementation differences which
are often not reflected in publications can have dramatic
impacts on performance. This can be seen for our final evalu-
ation performance after training on 2M samples in Tables 1
and 2, as well as a sample comparison in Figure 6. This

5
https://youtu.be/lKpUQYjgm80

6Differences are discussed in the supplemental (e.g. use of dif-
ferent optimizers for the value function baseline). Leaky ReLU
activations are left out to narrow the experiment scope.



Do seeds and number of runs matter?
Of course they do
• Neural networks require particular randomness to learn


• The environment, init, and policy can all be stochastic 


• How many runs to we need? 


• What might be going on here? 
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Figure 5: TRPO on HalfCheetah-v1 using the same hyperpa-
rameter configurations averaged over two sets of 5 different
random seeds each. The average 2-sample t-test across entire
training distribution resulted in t = �9.0916, p = 0.0016.

Results We perform 10 experiment trials, for the same
hyperparameter configuration, only varying the random seed
across all 10 trials. We then split the trials into two sets of
5 and average these two groupings together. As shown in
Figure 5, we find that the performance of algorithms can
be drastically different. We demonstrate that the variance
between runs is enough to create statistically different dis-
tributions just from varying random seeds. Unfortunately, in
recent reported results, it is not uncommon for the top-N tri-
als to be selected from among several trials (Wu et al. 2017;
Mnih et al. 2016) or averaged over only small number of tri-
als (N < 5) (Gu et al. 2017; Wu et al. 2017). Our experiment
with random seeds shows that this can be potentially mislead-
ing. Particularly for HalfCheetah, it is possible to get learning
curves that do not fall within the same distribution at all, just
by averaging different runs with the same hyperparameters,
but different random seeds. While there can be no specific
number of trials specified as a recommendation, it is possible
that power analysis methods can be used to give a general
idea to this extent as we will discuss later. However, more
investigation is needed to answer this open problem.

Environments
How do the environment properties affect variability in re-
ported RL algorithm performance?

To assess how the choice of evaluation environment can af-
fect the presented results, we use our aforementioned default
set of hyperparameters across our chosen testbed of algo-
rithms and investigate how well each algorithm performs
across an extended suite of continuous control tasks. For
these experiments, we use the following environments from
OpenAI Gym: Hopper-v1, HalfCheetah-v1, Swimmer-v1 and
Walker2d-v1. The choice of environment often plays an im-
portant role in demonstrating how well a new proposed algo-
rithm performs against baselines. In continuous control tasks,
often the environments have random stochasticity, shortened
trajectories, or different dynamic properties. We demonstrate
that, as a result of these differences, algorithm performance
can vary across environments and the best performing algo-
rithm across all environments is not always clear. Thus it is
increasingly important to present results for a wide range of

environments and not only pick those which show a novel
work outperforming other methods.

Results As shown in Figure 4, in environments with sta-
ble dynamics (e.g. HalfCheetah-v1), DDPG outperforms all
other algorithsm. However, as dynamics become more unsta-
ble (e.g. in Hopper-v1) performance gains rapidly diminish.
As DDPG is an off-policy method, exploration noise can
cause sudden failures in unstable environments. Therefore,
learning a proper Q-value estimation of expected returns is
difficult, particularly since many exploratory paths will result
in failure. Since failures in such tasks are characterized by
shortened trajectories, a local optimum in this case would be
simply to survive until the maximum length of the trajectory
(corresponding to one thousand timesteps and similar reward
due to a survival bonus in the case of Hopper-v1). As can be
seen in Figure 4, DDPG with Hopper does exactly this. This
is a clear example where showing only the favourable and sta-
ble HalfCheetah when reporting DDPG-based experiments
would be unfair.

Furthermore, let us consider the Swimmer-v1 environment
shown in Figure 4. Here, TRPO significantly outperforms
all other algorithms. Due to the dynamics of the water-like
environment, a local optimum for the system is to curl up and
flail without proper swimming. However, this corresponds
to a return of ⇠130. By reaching a local optimum, learning
curves can indicate successful optimization of the policy over
time, when in reality the returns achieved are not qualitatively
representative of learning the desired behaviour, as demon-
strated in video replays of the learned policy5. Therefore,
it is important to show not only returns but demonstrations
of the learned policy in action. Without understanding what
the evaluation returns indicate, it is possible that misleading
results can be reported which in reality only optimize local
optima rather than reaching the desired behaviour.

Codebases
Are commonly used baseline implementations comparable?

In many cases, authors implement their own versions of base-
line algorithms to compare against. We investigate the Ope-
nAI baselines implementation of TRPO as used in (Schulman
et al. 2017), the original TRPO code (Schulman et al. 2015a),
and the rllab (Duan et al. 2016) Tensorflow implementation of
TRPO. We also compare the rllab Theano (Duan et al. 2016),
rllabplusplus (Gu et al. 2016), and OpenAI baselines (Plap-
pert et al. 2017) implementations of DDPG. Our goal is to
draw attention to the variance due to implementation details
across algorithms. We run a subset of our architecture experi-
ments as with the OpenAI baselines implementations using
the same hyperparameters as in those experiments6.

Results We find that implementation differences which
are often not reflected in publications can have dramatic
impacts on performance. This can be seen for our final evalu-
ation performance after training on 2M samples in Tables 1
and 2, as well as a sample comparison in Figure 6. This

5
https://youtu.be/lKpUQYjgm80

6Differences are discussed in the supplemental (e.g. use of dif-
ferent optimizers for the value function baseline). Leaky ReLU
activations are left out to narrow the experiment scope.



Do seeds and number of runs matter?
Common bad practices

• Top N runs among >N runs


• Max performance across runs


• Statistics ignoring “failure runs”


• Using a sub-set of an unspecified number of runs



Environments have a large impact
We are far from truly general agents

Algorithm Environment 400,300 64,64 100,50,25 tanh ReLU LeakyReLU
TRPO Hopper-v1 2980 ± 35 2674 ± 227 3110 ± 78 2674 ± 227 2772 ± 211 -

(Schulman et al. 2015a) HalfCheetah-v1 1791 ± 224 1939 ± 140 2151 ± 27 1939 ± 140 3041 ± 161 -
TRPO Hopper-v1 1243 ± 55 1303 ± 89 1243 ± 55 1303 ± 89 1131 ± 65 1341± 127

(Duan et al. 2016) HalfCheetah-v1 738 ± 240 834 ± 317 850±378 834 ± 317 784 ± 352 1139 ±364
TRPO Hopper-v1 2909 ± 87 2828 ± 70 2812 ± 88 2828 ± 70 2941 ± 91 2865 ± 189

(Schulman et al. 2017) HalfCheetah-v1 -155 ± 188 205 ± 256 306 ± 261 205 ± 256 1045 ± 114 778 ± 177
PPO Hopper-v1 61 ± 33 2790 ± 62 2592 ± 196 2790 ± 62 2695 ± 86 2587 ± 53

(Schulman et al. 2017) HalfCheetah-v1 -1180 ± 444 2201 ± 323 1314 ± 340 2201 ± 323 2971 ± 364 2895 ± 365
DDPG Hopper-v1 1419 ± 313 1632 ± 459 2142 ± 436 1491 ± 205 1632 ± 459 1384 ± 285

(Plappert et al. 2017) HalfCheetah-v1 5579 ± 354 4198 ± 606 5600 ± 601 5325 ± 281 4198 ± 606 4094 ± 233
DDPG Hopper-v1 600 ± 126 593 ± 155 501 ± 129 436 ± 48 593 ± 155 319 ± 127

(Gu et al. 2016) HalfCheetah-v1 2845 ± 589 2771 ± 535 1638 ± 624 1638 ± 624 2771 ± 535 1405± 511
DDPG Hopper-v1 506 ± 208 749 ± 271 629 ± 138 354 ± 91 749 ± 271 -

(Duan et al. 2016) HalfCheetah-v1 850 ± 41 1573 ± 385 1224 ± 553 1311 ± 271 1573 ± 385 -
ACKTR Hopper-v1 2577 ± 529 1608 ± 66 2287 ± 946 1608 ± 66 2835 ± 503 2718 ± 434

(Wu et al. 2017) HalfCheetah-v1 2653 ± 408 2691 ± 231 2498 ± 112 2621 ± 381 2160 ± 151 2691 ± 231

Table 1: Results for our policy architecture permutations across various implementations and algorithms. Final average ±
standard error across 5 trials of returns across the last 100 trajectories after 2M training samples. For ACKTR, we use ELU
activations instead of leaky ReLU.

Algorithm Environment 400,300 64,64 100,50,25 tanh ReLU LeakyReLU
TRPO Hopper-v1 3011 ± 171 2674 ± 227 2782 ± 120 2674 ± 227 3104 ± 84 -

(Schulman et al. 2015a) HalfCheetah-v1 2355 ± 48 1939 ± 140 1673 ± 148 1939 ± 140 2281 ± 91 -
TRPO Hopper-v1 2909 ± 87 2828 ± 70 2812 ± 88 2828 ± 70 2829 ± 76 3047 ± 68

(Schulman et al. 2017) HalfCheetah-v1 178 ± 242 205 ± 256 172 ± 257 205 ± 256 235 ± 260 325 ± 208
PPO Hopper-v1 2704 ± 37 2790 ± 62 2969 ± 111 2790 ± 62 2687 ± 144 2748 ± 77

(Schulman et al. 2017) HalfCheetah-v1 1523 ± 297 2201 ± 323 1807 ± 309 2201 ± 323 1288 ± 12 1227 ± 462
DDPG Hopper-v1 1419 ± 312 1632 ± 458 1569 ± 453 971 ± 137 852 ± 143 843 ± 160

(Plappert et al. 2017) HalfCheetah-v1 5600 ± 601 4197 ± 606 4713 ± 374 3908 ± 293 4197 ± 606 5324 ± 280
DDPG Hopper-v1 523 ± 248 343 ± 34 345 ± 44 436 ± 48 343 ± 34 -

(Gu et al. 2016) HalfCheetah-v1 1373 ± 678 1717 ± 508 1868 ± 620 1128 ± 511 1717 ± 508 -
DDPG Hopper-v1 1208 ± 423 394 ± 144 380 ± 65 354 ± 91 394 ± 144 -

(Duan et al. 2016) HalfCheetah-v1 789 ± 91 1095 ± 139 988 ± 52 1311 ± 271 1095 ± 139 -
ACKTR Hopper-v1 152 ± 47 1930 ± 185 1589 ± 225 691 ± 55 500 ± 379 1930 ± 185

(Wu et al. 2017) HalfCheetah-v1 518 ± 632 3018 ± 386 2554 ± 219 2547 ± 172 3362 ± 682 3018 ± 38

Table 2: Results for our value function (Q or V ) architecture permutations across various implementations and algorithms. Final
average ± standard error across 5 trials of returns across the last 100 trajectories after 2M training samples. For ACKTR, we use
ELU activations instead of leaky ReLU.

Figure 4: Performance of several policy gradient algorithms across benchmark MuJoCo environment suites

Environment DDPG ACKTR TRPO PPO
HalfCheetah-v1 5037 (3664, 6574) 3888 (2288, 5131) 1254.5 (999, 1464) 3043 (1920, 4165)

Hopper-v1 1632 (607, 2370) 2546 (1875, 3217) 2965 (2854, 3076) 2715 (2589, 2847)
Walker2d-v1 1582 (901, 2174) 2285 (1246, 3235) 3072 (2957, 3183) 2926 (2514, 3361)
Swimmer-v1 31 (21, 46) 50 (42, 55) 214 (141, 287) 107 (101, 118)

Table 3: Bootstrap mean and 95% confidence bounds for a subset of environment experiments. 10k bootstrap iterations and the
pivotal method were used.

What is 130 return in swimmer? Curling up, flailing and not swimming



Code bases matter
Devil is in the details…or the SOTA is in the python …
• TRPO: OpenAI code, code from the paper, rl-lab tensor flow code


• DDPG: relax Theano code, OpenAI code


• Differences in the implementations are often not reported in the papers
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Figure 6: TRPO codebase comparison using our default set
of hyperparameters (as used in other experiments).

demonstrates the necessity that implementation details be
enumerated, codebases packaged with publications, and that
performance of baseline experiments in novel works matches
the original baseline publication code.

Reporting Evaluation Metrics
In this section we analyze some of the evaluation metrics
commonly used in the reinforcement learning literature. In
practice, RL algorithms are often evaluated by simply pre-
senting plots or tables of average cumulative reward (average
returns) and, more recently, of maximum reward achieved
over a fixed number of timesteps. Due to the unstable na-
ture of many of these algorithms, simply reporting the max-
imum returns is typically inadequate for fair comparison;
even reporting average returns can be misleading as the range
of performance across seeds and trials is unknown. Alone,
these may not provide a clear picture of an algorithm’s range
of performance. However, when combined with confidence
intervals, this may be adequate to make an informed deci-
sion given a large enough number of trials. As such, we
investigate using the bootstrap and significance testing as in
ML (Kohavi and others 1995; Bouckaert and Frank 2004;
Nadeau and Bengio 2000) to evaluate algorithm performance.

Online View vs. Policy Optimization An important dis-
tinction when reporting results is the online learning view
versus the policy optimization view of RL. In the online view,
an agent will optimize the returns across the entire learning
process and there is not necessarily an end to the agent’s
trajectory. In this view, evaluations can use the average cumu-
lative rewards across the entire learning process (balancing
exploration and exploitation) as in (Hofer and Gimbert 2016),
or can possibly use offline evaluation as in (Mandel et al.
2016). The alternate view corresponds to policy optimization,
where evaluation is performed using a target policy in an of-
fline manner. In the policy optimization view it is important to

run evaluations across the entire length of the task trajectory
with a single target policy to determine the average returns
that the target can obtain. We focus on evaluation methods
for the policy optimization view (with offline evaluation), but
the same principles can be applied to the online view.

Confidence Bounds The sample bootstrap has been a pop-
ular method to gain insight into a population distribution
from a smaller sample (Efron and Tibshirani 1994). Boot-
strap methods are particularly popular for A/B testing, and
we can borrow some ideas from this field. Generally a boot-
strap estimator is obtained by resampling with replacement
many times to generate a statistically relevant mean and con-
fidence bound. Using this technique, we can gain insight into
what is the 95% confidence interval of the results from our
section on environments. Table 3 shows the bootstrap mean
and 95% confidence bounds on our environment experiments.
Confidence intervals can vary wildly between algorithms and
environments. We find that TRPO and PPO are the most
stable with small confidence bounds from the bootstrap. In
cases where confidence bounds are exceedingly large, it may
be necessary to run more trials (i.e. increase the sample size).

Power Analysis Another method to determine if the
sample size must be increased is bootstrap power analy-
sis (Tufféry 2011; Yuan and Hayashi 2003). If we use our
sample and give it some uniform lift (for example, scaling uni-
formly by 1.25), we can run many bootstrap simulations and
determine what percentage of the simulations result in statis-
tically significant values with the lift. If there is a small per-
centage of significant values, a larger sample size is needed
(more trials must be run). We do this across all environment
experiment trial runs and indeed find that, in more unstable
settings, the bootstrap power percentage leans towards in-
significant results in the lift experiment. Conversely, in stable
trials (e.g. TRPO on Hopper-v1) with a small sample size,
the lift experiment shows that no more trials are needed to
generate significant comparisons. These results are provided
in the supplemental material.

Significance An important factor when deciding on an
RL algorithm to use is the significance of the reported gains
based on a given metric. Several works have investigated
the use of significance metrics to assess the reliability of
reported evaluation metrics in ML. However, few works in
reinforcement learning assess the significance of reported
metrics. Based on our experimental results which indicate
that algorithm performance can vary wildly based simply on
perturbations of random seeds, it is clear that some metric is
necessary for assessing the significance of algorithm perfor-
mance gains and the confidence of reported metrics. While
more research and investigation is needed to determine the
best metrics for assessing RL algorithms, we investigate an
initial set of metrics based on results from ML.

In supervised learning, k-fold t-test, corrected resampled t-
test, and other significance metrics have been discussed when
comparing machine learning results (Bouckaert and Frank
2004; Nadeau and Bengio 2000). However, the assumptions
pertaining to the underlying data with corrected metrics do
not necessarily apply in RL. Further work is needed to inves-
tigate proper corrected significance tests for RL. Nonetheless,
we explore several significance measures which give insight
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Figure 6: TRPO codebase comparison using our default set
of hyperparameters (as used in other experiments).

demonstrates the necessity that implementation details be
enumerated, codebases packaged with publications, and that
performance of baseline experiments in novel works matches
the original baseline publication code.

Reporting Evaluation Metrics
In this section we analyze some of the evaluation metrics
commonly used in the reinforcement learning literature. In
practice, RL algorithms are often evaluated by simply pre-
senting plots or tables of average cumulative reward (average
returns) and, more recently, of maximum reward achieved
over a fixed number of timesteps. Due to the unstable na-
ture of many of these algorithms, simply reporting the max-
imum returns is typically inadequate for fair comparison;
even reporting average returns can be misleading as the range
of performance across seeds and trials is unknown. Alone,
these may not provide a clear picture of an algorithm’s range
of performance. However, when combined with confidence
intervals, this may be adequate to make an informed deci-
sion given a large enough number of trials. As such, we
investigate using the bootstrap and significance testing as in
ML (Kohavi and others 1995; Bouckaert and Frank 2004;
Nadeau and Bengio 2000) to evaluate algorithm performance.

Online View vs. Policy Optimization An important dis-
tinction when reporting results is the online learning view
versus the policy optimization view of RL. In the online view,
an agent will optimize the returns across the entire learning
process and there is not necessarily an end to the agent’s
trajectory. In this view, evaluations can use the average cumu-
lative rewards across the entire learning process (balancing
exploration and exploitation) as in (Hofer and Gimbert 2016),
or can possibly use offline evaluation as in (Mandel et al.
2016). The alternate view corresponds to policy optimization,
where evaluation is performed using a target policy in an of-
fline manner. In the policy optimization view it is important to

run evaluations across the entire length of the task trajectory
with a single target policy to determine the average returns
that the target can obtain. We focus on evaluation methods
for the policy optimization view (with offline evaluation), but
the same principles can be applied to the online view.

Confidence Bounds The sample bootstrap has been a pop-
ular method to gain insight into a population distribution
from a smaller sample (Efron and Tibshirani 1994). Boot-
strap methods are particularly popular for A/B testing, and
we can borrow some ideas from this field. Generally a boot-
strap estimator is obtained by resampling with replacement
many times to generate a statistically relevant mean and con-
fidence bound. Using this technique, we can gain insight into
what is the 95% confidence interval of the results from our
section on environments. Table 3 shows the bootstrap mean
and 95% confidence bounds on our environment experiments.
Confidence intervals can vary wildly between algorithms and
environments. We find that TRPO and PPO are the most
stable with small confidence bounds from the bootstrap. In
cases where confidence bounds are exceedingly large, it may
be necessary to run more trials (i.e. increase the sample size).

Power Analysis Another method to determine if the
sample size must be increased is bootstrap power analy-
sis (Tufféry 2011; Yuan and Hayashi 2003). If we use our
sample and give it some uniform lift (for example, scaling uni-
formly by 1.25), we can run many bootstrap simulations and
determine what percentage of the simulations result in statis-
tically significant values with the lift. If there is a small per-
centage of significant values, a larger sample size is needed
(more trials must be run). We do this across all environment
experiment trial runs and indeed find that, in more unstable
settings, the bootstrap power percentage leans towards in-
significant results in the lift experiment. Conversely, in stable
trials (e.g. TRPO on Hopper-v1) with a small sample size,
the lift experiment shows that no more trials are needed to
generate significant comparisons. These results are provided
in the supplemental material.

Significance An important factor when deciding on an
RL algorithm to use is the significance of the reported gains
based on a given metric. Several works have investigated
the use of significance metrics to assess the reliability of
reported evaluation metrics in ML. However, few works in
reinforcement learning assess the significance of reported
metrics. Based on our experimental results which indicate
that algorithm performance can vary wildly based simply on
perturbations of random seeds, it is clear that some metric is
necessary for assessing the significance of algorithm perfor-
mance gains and the confidence of reported metrics. While
more research and investigation is needed to determine the
best metrics for assessing RL algorithms, we investigate an
initial set of metrics based on results from ML.

In supervised learning, k-fold t-test, corrected resampled t-
test, and other significance metrics have been discussed when
comparing machine learning results (Bouckaert and Frank
2004; Nadeau and Bengio 2000). However, the assumptions
pertaining to the underlying data with corrected metrics do
not necessarily apply in RL. Further work is needed to inves-
tigate proper corrected significance tests for RL. Nonetheless,
we explore several significance measures which give insight



Evaluation criteria matter
Many possible interesting questions to consider
• Some algorithms are very unstable


• The mean can be very misleading (e.g., multimodal performance)


• What is our question: Online vs offline performance


• Do we care about rewards as the agent’s learn?


• Or the performance of the policy (without exploration) at the end?


• How do we measure variation and confidence?


• Standard error and t-test, bootstrap CI, permutation test, sign test …


• What does the data even loop like anyway: what distributional assumptions are we 
making?



Henderson et al’s recommendations
We can do better
• Match the results in the literature as a first step


• Deal with hyper-parameters in a systematic way


• More runs


• Do significance tests


• Report all details: code optimizations, hyper parameter settings, setup, preprocessing, 
evaluation metrics for all algorithms tested


• We need algorithms that are less sensitive to their hyper-parameters


• Experiments should as a scientific question


• Maybe we should focus on real-world applications more (less game playing)?



Henderson et al motivated the creation of 
reproducibility checklists and requests for 
open sourcing code—what do you think?


