
Start recording …



How should we represent  
the agent’s knowledge  

of the world?



Everything the agent knows 
should be a statement about the 

data-stream
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Figure 3: An illustration of part of what the
agent learns in the partially observable envi-
ronment. The second column is a sequence
of states with (relative) time index as given by
the first column. The sequence was generated
by controlling the agent manually. On steps
1-25 the agent was spun clockwise in place,
and the trajectory after that is shown by the
line in the last state diagram. The third and
fourth columns show the values of the nodes
corresponding to 5 and 8 in Figure 1, one for
each color-observation bit.

time index t = 1). On steps 1-25 the
agent was spun clockwise in place. The
third column shows the prediction for
node 5 in each portion of the question
network. That is, the predictions shown
are for each color-observation bit at ter-
mination of the Forward option. At
t = 1, the agent is facing the orange
wall and it predicts that the Forward
option would result in seeing the orange
bit and none other. Over steps 2-5 we
see that the predictions are maintained
accurately as the agent spins despite the
fact that its observation bits remain the
same. Even after spinning for 25 steps
the agent knows exactly which way it is
facing. While spinning, the agent cor-
rectly never predicts seeing the green bit
(after Forward), but if it is driven up
and turned, as in the last row of the fig-
ure, the green bit is accurately predicted.

The fourth column shows the prediction
for node 8 in each portion of the question
network. Recall that these nodes cor-
respond to the sequence Forward, L,
Forward. At time t = 1, the agent
accurately predicts that Forward will
bring it to orange (third column) and also
predicts that Forward, L, Forward
will bring it to green. The predictions
made for node 8 at each subsequent step
of the sequence are also correct.

These results show that the agent is able
to accurately maintain its long term pre-
dictions without directly encountering
sensory verification. How much larger
would the TD network have to be to han-
dle a 100x100 gridworld? The answer is
not at all. The same question network
applies to any size problem. If the lay-
out of the colored walls remain the same,
then even the answer network transfers
across worlds of widely varying sizes.
In other experiments, training on succes-
sively larger problems, we have shown
that the same TD network as used here
can learn to make all the long-term pre-
dictions correctly on a 100x100 version
of the 6x6 gridworld used here.
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that it can keep updated as it turns in
the middle of the space. Figure 3 is a
demonstration of the compass learned af-
ter a representative run of 200,000 time
steps. At the end of the run, the agent
was driven manually to the state shown
in the first row (relative time index t =
1). On steps 1-25 the agent was spun
clockwise in place. The third column
shows the prediction for node 5 in each
portion of the question network. That
is, the predictions shown are for each
color-observation bit at termination of
the Forward option. At t = 1, the
agent is facing the orange wall and it pre-
dicts that the Forward option would re-
sult in seeing the orange bit and none
other. Over steps 2-5 we see that the pre-
dictions are maintained accurately as the
agent spins despite the fact that its obser-
vation bits remain the same. Even after
spinning for 25 steps the agent knows ex-
actly which way it is facing. While spin-
ning, the agent correctly never predicts
seeing the green bit (after Forward),
but if it is driven up and turned, as in the
last row of the figure, the green bit is ac-
curately predicted.

The fourth column shows the prediction
for node 8 in each portion of the question
network. Recall that these nodes cor-
respond to the sequence Forward, L,
Forward. At time t = 1, the agent
accurately predicts that Forward will
bring it to orange (third column) and also
predicts that Forward, L, Forward
will bring it to green. The predictions
made for node 8 at each subsequent step
of the sequence are also correct.

These results show that the agent is able
to accurately maintain its long term pre-
dictions without directly encountering
sensory verification. How much larger
would the TD network have to be to han-
dle a 100x100 gridworld? The answer is
none at all. The same question network
applies to any size problem. If the lay-
out of the colored walls remain the same,
then even the answer network transfers
across worlds of widely varying sizes.
We have used the same TD network to
make all long-term predictions correctly
on a 100x100 version of this problem.

• Y5 is leap


• Y8 is leap, L, leap
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Let’s start discussing making 
things better

The Good, the bad, and the ugly



Two papers about methodology and better RL experiments

• A recent Deep RL paper


• An older (pre deep learning hype) paper


• Both from serious algorithm development experts who also happen to be very 
serious empiricists


• One focused on the Arcade Learning Environment (ALE) or Atari


• The other worried about overfitting to class RL control tasks


• Both ultimately focused on general purpose agents that can solve many 
tasks!  



305 citations between them



Quick history lesson on ALE
• Based on video game console from the 80’s


• First used by Diol et al (2008) to investigate object oriented representations for RL in Pitfall!


• From each frame a list of objects was generated (e.g., Man, Hole, Ladder, Log, Wall and Tree)


• With attributes: width and height, and direction for the man


• Seven actions: WalkRight, WalkLeft, JumpLeft, JumpRight, Up, Down and JumpUp


• WalkLeft requires four frames: one to tell Pitfall to move the Man to the left, and three frames 
where no action is taken to allow for the animation of the Man to complete 


• Raw inputs are huge, but object representations reduces it to 6^(640x420)


• Agent learned the optimal policy from only 494 actions, or 4810 game frames 


• SOTA in pitfall was zero until 2020: specialized distributed architectures trained for 5 billion frames or 
950 days per game



History of ALE
• Next Naddaf undertook connecting the Atari 2600 emulator to RL agents as 

an MSc project with Bowling at UofA



Why ALE? 
Great platform for research

• The inputs are massive; state-construction is needed


• All games have the same interface, but very different dynamics


• 7 bit x 160x210, 18 discrete actions


• Clear reward signal: score (huge variety) 


• Naturally episodic: when the game ends


• And its a simulator so saving and storing the agent (weights), resets, teleports all 
possible—hopefully mostly for debugging


• 55 different games >> total number of classic benchmarks in RL



Why ALE? 
It’s all about general purpose agents

• Fascinating for representation learning: using vision or RAM


• Fascinating potential for generalization and transfer: 5 paddle-based games!


• Fascinating for intrinsic motivation: humans don’t seem to look at the score


• True challenge for exploration-exploitation: agent can die but must progress; some games 
are particularly hard for exploration


• One agent (function approximation, learning algorithm, set of hyper-parameters) for 55 
environments


• The games were not made by RL researchers; designed to be hard and interesting!


• Initial results showed it was very very hard



ALE & DQN was a breakthrough



Revisiting ALE (2018)
A check-in and a refocus

• Discuss the usage and impact of ALE


• Highlight some problems


• Provide direction on how best to use ALE to drive research in RL



Troubling trends in ALE
A roadmap

• Divergent Evaluation Methodologies


• Performance measures


• Determinism and stochasticity


• A new gold-standard set of benchmark results for ALE


• Algorithmic areas for future ALE research



Divergent Evaluation Methodologies
How we use ALE

• Definition of episodes and termination


• game over (some games have multiple lives—hard to learn about)


• Nature DQN: at death (but not during evaluation)


• Setting hyperparameters


• split games into train and test set (tune on training set)


• Train on all the games


• Tune hypers per game!!



Divergent Evaluation Methodologies
How we use ALE

• Measuring training data


• Fixed number of episodes (usual challenges associated with)


• Total number of frames


• Do we skip frames?


• Summarizing performance; everyone does it differently


• How do we compare fairly? Re-run every time?!?


• Reporting performance during learning is ideal


• ALE is totally deterministic!



Summarizing performance
Deep dive

• Overall: more data->better policies


• But what do we want: learning speed, peak performance, stability, never-
ending improvement?


• Many possible options:


• Evaluation after learning


• Evaluating the best policy


• Area under the learning curve



Test performance
How good is the greedy policy

• Train, freeze learning, then average score over test episodes


• Obscures sample efficiency


• Agent could mostly explore during “training” then switch to eval. policy


• Nature DQN periodically evaluated the greedy policy, only reporting best 
evaluation results over all training


• stability problems



Performance during training
Return to good-old-fashion RL

• Reward/score plotted against training time… on test episodes?


• Then take the area under the curve


• Short-run good performance de-emphasized 


• Plummeting might not be well captured


• High-variance not always well captured… more in coming lectures


• Reward periodically during training…no tests 

• Average of last k episodes (continual learning) 



Determinism & stochasticity
Atari is totally deterministic

• Deterministic start states, deterministic outcomes given a sequence of actions


• Agent’s can exploit this…do we care? (e.g., same is true for Mountain Car)


• Hydra architecture and GoExplore exploit this


• “The Brute” maintains a partial history of trajectories to compute models and does Dynamic 
programming to find the best trajectory so far


• Such deterministic agents are often not robust


• The real problem is non-standard injection of stochasticity:


• e.g., human starts, random # of no-ops (no effect or huge), forced random actions, etc ..


• Paper recommends sticky actions: small prob that prior action is executed again 



A new set of benchmark results
Blob what?



A new set of benchmark results
Main results
• Sarsa’s perf steadily increases (on in 10% of games is perf worse after 200m)


• In 38 games no stat. sig. improvement after 100m frames


• DQN: higher variability and did not benefit as much from more data


• But results have low significance overall due to limitations of 5 runs


• Original DQN results were one run!


• Performance drops were algorithm dependent not game dependent


• Overall perf is very close & sticky actions didn’t hurt either agent



Open problems in ALE
Things Atari should be really good for investigating
• Representation learning:  

• Neural-net agents have high sample complexity; especially in sparse reward tasks


• Blob-Prost Sarsa is generally faster


• Prioritized replay, Auxiliary task learning, and intrinsic rewards help


• Many fiddly parameters and specialized compute needed


• More fresh ideas like Generate and Test (http://www.incompleteideas.net/papers/MS-AAAIws-2013.pdf) 
and Co-agent networks (http://proceedings.mlr.press/v119/kostas20a/kostas20a.pdf) are needed 



Open problems
Models and planning
• Most successes in ALE use the emulator—a perfect model


• Unrolling learned, imperfect models is hard



Open problems
The rest …

• Exploration: Thompson sampling, Optimistic Exp for NNs, model error, 
counts


• Transfer: we can transfer between similar games in a general way:


• Not the policy, the value function, the representation …


• Promising empirical study: https://arxiv.org/pdf/1810.00123.pdf


• Options and temporal abstraction: learning macro actions 


• Off-policy learning: we do it (Q-learning & replay), but potential, is unrealized 
due to stability, SOTA focus, and biases of researchers

https://arxiv.org/pdf/1810.00123.pdf


A long-time ago …
When nobody used GPUs, Neural nets were unpopular and people still used Mountain Car

• Empirical work can yield inflated results & specialization to particular problems


• Can you imagine spending all your time on puddle world?


• Consider the usual setup: say MC, average reward averaged over runs


• We can engineer the features, value func. init. & learning rate for MC


• The same setting could be poor in puddle world, or something else (see why ALE is great)


• Single environment evaluation in RL can be problematic  


• In supervised learning overfitting can be an issue


• In RL we have environment and evaluation overfitting 

• Can be worse in RL, because environments can generate unlimited training data



Historical context
The RL Competition

• Started in 2005, called the NeurIPS Benchmarks and Bakeoffs


• We built software to standardized evaluation in RL: called RL-Glue


• Each year we improved the software to make it more robust to cheating:


• Environments ran of a server


• Limited interaction with the environment (few trial runs—one a week), then your final 
performance runs (limited)


• Signed jar files and code to detect modification and other forms of cheating


• Focus of the competition was online, model-free RL & most importantly research progress


• Problems were selected to represent fundamental, open questions
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They still 
cheated

Wanted to win Tetris; figured out the model and did Dynamic programming



Our focus back then was general algorithms
Polyathlon competition track 

• 5 Continuous state, discrete action problems


• 3 revealed to competitors and available for development


• 2 hidden


• Overall performance across all 5 determined best, most general agent


• People cheated: 


• if statements to detect which problem to deploy pre-trained agents


• Guessed possible hidden problems and pre-trained agents


• Very similar goals to the ALE! 



In the end little innovation and 
research came out of the competitions



Protecting Against Evaluation Overfitting in Empirical 
Reinforcement Learning

• Assume the algorithm designer is self interested!


• We want evaluations that free designers from worry about their biases 
impacting evaluation


• In most cases the numerical results on a particular domain have no actual 
external utility: 


• nobody cares about scores in Pitfall!

Whiteson et al (2018)



Types of overfitting
Evaluation, environment, data

• Experiments suggest utility of the algorithms in some target deployment


• Evaluation overfitting: performing well in evaluation but not on the target distribution


• Data overfitting: func. learned is customized to the training data, fails to generalize to data sampled 
from the same environment


• —not an issue in RL because evaluation is online from environments which are infinite data 
generators


• Environment overfitting: agent performs well on environment, but poorly on others


• The learning algorithm is overfit rather than the function produced (policy/value-func)


• Target distribution is the distribution over environments


• Access to simulators actually makes this worse



Target distributions

• Typically involve multiple environments


• Fitting: customizing the algorithm to the target dist. at the expense of dist. 
outside it 


• Overfitting: customizing the algorithm to the evaluation at the expense of the 
target dist.



Beyond single environments
Can be good or bad

• Single using environments can lead to overfitting


• We can create a distribution over environments—starting with a single simple 
environment like Mountain Car


• We can then sample from this distribution evaluating an agent on multiple 
environments


• Generalized Environments 

• G = <Θ, μ> 

• Θ is the set of environments and μ is the distribution over the set



Example: Helicopter hovering

• Each trial/run the agent faces a new environment:


• Unknown wind velocity 

Environment used in the RL competition



Generalized environments
Saves us from ourselves, clear experiments

• No amount of tuning can eliminate the uncertainty represented by G.


• =>fair comparisons between agents


• Makes explicit what generality is desired: 


• choice of G specifies both a target class & importance of environments in 
that class



How this might work
Saves us from ourselves, clear experiments

• Agent designer knows G


• They can sample freely from G and tune their agent


• Then the test phase:


• For N trials, sample an environment from G


• Train and evaluate agent


• Designer does not know exactly which environments the agent will face 



Secret Generalized Environments
Don’t know G

• Perhaps your are thinking about deployment: flying a helicopter


• We don’t really know the wind conditions well


• If the designer knows G they may overfit to the uncertainty it encodes


• G can be hidden and access to it limited during tuning 



Meta-Generalized Environments
It’s distributions of environments all the way down

• We could have a distribution over a set generalized environments



Summarizing Performance Generalized Environments
Simple averaging won’t due

• Environments could have different reward scales


• Because some environments are harder, run longer, or have different reward 
scales


• We could do a sign test


• This question comes up in lots of places: competitions, time series 
forecasting


• Paper notes people don’t do this in SL 



A simple experiment
To evaluate this evaluation scheme

• Compare usual tile coding, tuned by hand, with an adaptive one


• Conventional tile coding: need to know the ranges of the state variables


• The Range-adaptive TC:


• We need to stretch the tile coder, whenever we get a point outside the 
range


• So we need to adjust the weights associated with each tile on the fly


• What are the challenges in showing RA-TC is better than TC on just one 
environment?



Generalized classic control

• Mountain Car, Acrobot, and Puddle World


• Each is a generalized environment:


• uniform(-n,n) applied to action, sampled from uniform(0,.5)


• Transformation function applied to observation (scale, invert, translate,…)


• Random starts or not


• Compare fixed-range TC, adaptive-range TC, and cheater TC



Tuning agent procedure
So much compute

• Sample 25 generalized environments


• Test each type of agent for one trial on each environment, sweeping:


• Alpha \in {2.0, 1.0, .75, .5, .25, .125, 0.06125}


• Lambda \in {.99, .95, .9, .75, .5, .25, .125, .06125, 0}


• Tiles \in {4,8,16,32}


• Tilings \in {4,8,16,32}


• And some other stuff …


• 3024 configurations, 70k time steps


• Candidate tuned agent was the best across generalized environments



Results
Adaption matters

• Each tuned agent was tested on 100 additional environments 



Results summary
Relevant today

• Clear experiment showing the adaptive method is useful & non-adaptive 
method—even with tuning—was not as effective


• Enormous compute required


• Open problem on how to exactly aggregate performance across environments


• Is this close to what we are getting with the Atari (ALE) or AIGym problem 
sets?


• Could we do this with modern large scale domains? Would it lead to more 
general agents?



Don’t over-focus on benchmarks



Overfitting, target dists & ALE

• Whiteson: research towards general agents 

• with good evaluation methodology & Mountain Car


• ALE : a challenge problem to inspire research towards general agents 

• ALE research fell victim to bad evaluation methodology


• Two insights here:


• evaluation & environment overfitting in ALE can happen, just like MC!


• empirical methodology is a constant back & forth



Your questions

• Average reward: What are good options for environments to test these algs 
on? (Not the 2-cycle world)


• What’s a good performance measure?


• What topographical structure are these TD networks constraint to have? 


• In the black and white world example to illustrate the need for tracking in 
stationary problems - How exactly is tracking incorporated in the final 
implementation?


• What are some pitfalls in randomly generating procedural (chain) MDPs and 
Gridworlds?


