Start recording ...

How should we represent
the agent’s knowledge
of the world?

Would a Would my
person s ay try-to
that's a battery proced
harger? succee d

Everything the agent knows
should be a statement about the
data-stream

I

L
F Red
o e
Wander, Leap . .
| L R
Leap Leap
Figure 2: The compass world (left) and a portion of the

I =_"111]

25

29

Y3

y®

OYRBG

OYRBG

OYRBG

OYRBG

OYRBG

OY RBG

OYRBG

OYRBG

OYRBG

OYRBG

OYRBG

OYRBG

OYRBG

OY RBG

e Y5 is leap
e Y8 Isleap, L, leap

| How much larger
would the TD network have to be to han-
dle a 100x100 gridworld? The answer 1s
none at all. The same question network
applies to any size problem. If the lay-
out of the colored walls remain the same,
then even the answer network transfers
across worlds of widely varying sizes.
We have used the same TD network to
make all long-term predictions correctly
on a 100x100 version of this problem.

Admin

 No office hours this week

* Project team list sheet:

* https://docs.google.com/spreadsheets/d/11-
QybvJk5V5dilsHOL9f6eNx5fAROgFEuUekHS94MhE

* Session moderators for today: Johnstonbaugh, Kerrick & Burega, Bradley
Thomas

» https://docs.google.com/spreadsheets/d/
1dbmlvduupZUCDixU4HW?2 3500VrVG-g1FoEAG-uWhMKk

https://docs.google.com/spreadsheets/d/1f-QybvJk5V5dilsHOL9f6eNx5fAR0gFEuUekHS94MhE
https://docs.google.com/spreadsheets/d/1f-QybvJk5V5dilsHOL9f6eNx5fAR0gFEuUekHS94MhE
https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk
https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk

Let’s start discussing making
things better

The Good, the bad;,-and-the-ugly

50t ANNIVERSARY EDITION

CLINT EASTWOO0D

LEEVANCLEEF (i i TacH
SERGIO LEONE

Two papers about methodology and better RL experiments

* A recent Deep RL paper
* An older (pre deep learning hype) paper

 Both from serious algorithm development experts who also happen to be very
serious empiricists

* One focused on the Arcade Learning Environment (ALE) or Atari
* The other worried about overfitting to class RL control tasks

* Both ultimately focused on general purpose agents that can solve many
tasks!

Journal of Artificial Intelligence Research 61 (2018) 523-562 Submitted 9/17; published 3/18

Revisiting the Arcade Learning Environment:
Evaluation Protocols and Open Problems for General Agents

Marlos C. Machado MACHADOQUALBERTA.CA
University of Alberta, Edmonton, Canada

Marc GG. Bellemare BELLEMAREQGOOGLE.COM
Google Brain, Montréal, Canada

Erik Talvitie ERIK.TALVITIEQFANDM.EDU
Franklin € Marshall College, Lancaster, USA

Joel Veness AIXIQGOOGLE.COM
DeepMind, London, United Kingdom

Matthew Hausknecht MATTHEW.HAUSKNECHTQ@QMICROSOFT.COM
Microsoft Research, Redmond, USA

Michael Bowling MBOWLINGQUALBERTA.CA
University of Alberta, Edmonton, Canada
DeepMind, Edmonton, Canada

Protecting Against Evaluation Overfitting
in Empirical Reinforcement Learning

Shimon Whiteson*, Brian Tanner!, Matthew E. Taylor?, and Peter Stone3
*Informatics Institute, University of Amsterdam
fDepartment of Computing Science, University of Alberta
IDepartment of Computer Science, Lafayette College
SDepartment of Computer Science, University of Texas at Austin

305 citations between them

Quick history lesson on ALE

 Based on video game console from the 80’s

Figure 2. Initial screen of Pitfall.

* First used by Diol et al (2008) to investigate object oriented representations for RL in Pitfall!
* From each frame a list of objects was generated (e.g., Man, Hole, Ladder, Log, Wall and Tree)

* With attributes: width and height, and direction for the man

* Seven actions: WalkRight, WalkLeft, JumpLeft, JumpRight, Up, Down and JumpUp

 WalkLeft requires four frames: one to tell Pitfall to move the Man to the left, and three frames
where no action is taken to allow for the animation of the Man to complete

 Raw inputs are huge, but object representations reduces it to 6°(640x420)
* Agent learned the optimal policy from only 494 actions, or 4810 game frames

 SOTA in pitfall was zero until 2020: specialized distributed architectures trained for 5 billion frames or
950 days per game

History of ALE

 Next Naddaf undertook connecting the Atari 2600 emulator to RL agents as
an MSc project with Bowling at UofA

(a) Asterix (screenshot)

(c) Freeway (screenshot)

(e) Seaquest (screenshot)

(b) Asterix (abstract)

(f) Seaquest (abstract)

Reward per Episode

Reward per Episode

600

— Random '.'_
== Best-Action 3o
500 - — BASS-agent . X kI |
' - - DISCO-agent oy Sl
RAM-agent .,,,»_:“-,y ‘
w0 a0 A
oY
Ras VY WAV
\ | w
X A [
ST
200 Iﬁl /h‘“‘, ; PPN
INY. WA
2 | L iy W
'/ \M" v: l“n . / ‘l"h_'l-
200 [e o '
100
U0 2000 1000 6000 8000 10000 12000 14000 16000 18000
Episode Number
(a) Asterix
160
— Random
= Best-Action
10 BASS-agent ""\‘ |
DISCO-agent h
M / f\m
120[] ... RAM-agent \,»WAVV.NV \./ ‘
100 " '
| >5’
J ' ™ 'I R
I —) A s o™
| v - "y h.v‘._;‘ 5 ’3.,,.%.5.
60 = s r*',,"'.\..""w,m,‘ 1

(3]

Reward per Episode

120

100

Reward per Episode
== »

— Random

= Best-Action

— BASS-agent

- - DISCO-agent
RAM-agent

0 2000 4000 GO0 8000 10000
Episode Number

(b) Freeway

() i J — Random
== Best-Action
20 BASS-agent
1 DISCO-agent
---- RAM-agent
0 2000 000 6000 ®000 10000 12000 02000 1000 6000 =000 10000 12000 14000 16000 18000
Episode Number Episode Number
Asterix Freeway Seaquest
reward « A reward o A reward o A
545 3x107t | 0.3 2.3 1x107° | 0.5 135 1x1071 | 0.3
478 3x107t | 0.5 2.3 1x107° | 0.8 127 1x1072%2 | 0.3
452 3x107' | 0.8 2.2 1x107° | 0.3 121 1x1072 | 0.5
398 1x107! | 0.3 2.1 1x107% | 0.8 119 3x1071 | 0.3
377 1x107' | 0.5 2.0 1x107% | 0.5 115 1x1071 | 0.5

Game Average Reward per Episode

BASS DISCO RAM Full-Tree | UCT Best-Act | Random
Alien 15.77 14.21 4247 75.61 83.91 3.0 6.4
Amidar 17.51 3.0 33.31 1067 2171 12.0 0.5
Assault 96.9 87.7 106 4537 6297 104 97.3
Asteroids 20.2 13.8 61.07 1377 2197 2.0 21.7
Atlantis 53.9 56.0 60.57 1217 1271 15.6 58.2
Bank Heist 10.87 3.21 3097 31.17 59.17 0.0 2.3
Battlezone 0.5 0.3 1.07 2.87 6.97 0.6 0.3
Beamrider 133 120 1517 6057 6051 132 105
Berzerk 189 158 2317 101 152 200 118
Bowling 7.9 7.6 7.71 3.5 3.4 0.0 6.9
Boxing -1.01 -7.4 -0.17 1921 1917 -7.3 -5.0
Carnival 70.8 60.1 1737 3327 2871 0.0 85.7
Centipede 968 1147 1262 65307 32157 2011 991
Chopper Cmd 3.47 2.4 3.81 11.27 18.47 3.1 2.3
Crazy Climber 17.87 5.81 38.07 12.07 57.671 0.0 2.5
Demon Attack 54.4 374 53.3 3117 3157 73.0 47.9
Double Dunk -0.8 -1.3 -0.2 -2.1 0.57 0.0 -0.6
Elevator Action 1.87 0.17 0.0 0.67 0.21 0.0 0.0
Enduro 4.6 3.4 6.57 28.57 46.97 5.6 0.5
Fishing Derby -19.8 -20.2 -20.8 -12.31 -1.97 -20.1 -20.4
Frostbite 47.21 25.5 53.47 1267 1187 40.0 18.1
Gopher 2017 78.7" 1497 3677 3917 0.0 31.0
Gravitar 30.6 34.7 54.47 2137 4967 0.0 29.9
H.E.R.O. 68.27 58.4T 70.77 3377 60707 0.0 13.1
Ice Hockey -1.5 -1.8 -0.47 -0.37 2.17 -0.6 -1.3
James Bond 007 1.3 0.4 9.37 14.17 152f 0.0 0.0
Journey Escape -11949.4 | -13093.4 | -7449.0 | 1841T 9061 -5391.7 | -11664.4
Kangaroo 0.2 0.17 1.81 3.6 6.2 0.0 0.0
Krull 5761 2751 8177 6797 10557 0.0 241
Kung-Fu Master 7.17 5.51 15.47 5.0 10.27 0.0 0.6
Montezumas Rev 0.0 0.0 0.0 0.0 0.07 0.0 0.0
Ms. Pac-Man 3287 2147 5447 19247 17777 90.0 78.0
Name This Game 0.0 0.0 0.0 12277 12537 296 317
Phoenix 16.37 16.77 37.21 2167 1757 2.0 114
Pitfall 11 0.0 0.0 0.0 -0.2 0.0 0.0 -55.6
Pitfall! 0.0 0.0 0.0 -68.7 -40.0 3133 -76.7
Pooyan 3027 2147 5797 13117 12831 12.0 177
Private Eye 0.0 1.1 99.21 47.17 25.97 0.0 -0.5
River Raid 11727 7897 9437 17777 110 758 564
Road Runner 0.9 0.1 9.67 0.1 1.2 2.1 0.0
Robot Tank 1.87 1.0 4.7% 0.5 0.4 1.1 0.3
Skiing 1.47 0.2 2.41 12.47 15.87 0.0 1.3
Solaris 0.1 0.21 9.9 13.51 3.81 0.0 0.0
Stargunner 1.3 0.8 1.7 3.3 6.07 2.0 1.2
Tennis -0.97 -0.97 -1.07 0.07 0.07 -1.0 -1.0

Why ALE?

Great platform for research

 [The inputs are massive; state-construction is needed

* All games have the same interface, but very different dynamics
e 7 bit x 160x210, 18 discrete actions

* Clear reward signal: score (huge variety)

* Naturally episodic: when the game ends

 And its a simulator so saving and storing the agent (weights), resets, teleports all
possible—hopefully mostly for debugging

o 55 different games >> total number of classic benchmarks in RL

Why ALE?

It’s all about general purpose agents

* Fascinating for representation learning: using vision or RAM
* Fascinating potential for generalization and transfer: 5 paddle-based games!
* Fascinating for intrinsic motivation: humans don’t seem to look at the score

* True challenge for exploration-exploitation: agent can die but must progress; some games
are particularly hard for exploration

* One agent (function approximation, learning algorithm, set of hyper-parameters) for 55
environments

 The games were not made by RL researchers; designed to be hard and interesting!

* |nitial results showed it was very very hard

Google Acquires Artificial Intelligence Startup

DeepMind For More Than $500M

Catherine Shu @catherineshu / 6:20 PM MST = January 26, 2014

DEEPMIND

-

INNOVATIONS IN

The microbiome

\nature

EPIDEMIOLOGY

SHARE DATA IN
OUTBREAKS
Forge openaccess
to sequences and more
PAGE 477

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Self-taught’Al software
attains human-level
performance invideo games

COSMOLOGY QUANTUM PHYSICS 2 ’NfiTURE.CUM,"NATURE

AGIANTINTHE | TELEPORTATION
EARLY UNIVERSE FOR TWO 05
9 770028| !183|0I75| |

A supermassive black hole Transferring two properties
at aredshiftof 6.3 of asingle photon
PAGES 490 & 512 PAGES 491 & 516

Revisiting ALE (2018)

A check-In and a refocus

* Discuss the usage and impact of ALE
* Highlight some problems

* Provide direction on how best to use ALE to drive research in RL

Troubling trends In ALE

A roadmap

* Divergent Evaluation Methodologies

 Performance measures

 Determinism and stochasticity

* A new gold-standard set of benchmark results for ALE

» Algorithmic areas for future ALE research

Divergent Evaluation Methodologies

How we use ALE

* Definition of episodes and termination
 game over (some games have multiple lives—hard to learn about)
* Nature DQN: at death (but not during evaluation)
o Setting hyperparameters
* split games into train and test set (tune on training set)
* [rain on all the games

* Tune hypers per game!!

Divergent Evaluation Methodologies

How we use ALE

 Measuring training data
* Fixed number of episodes (usual challenges associated with)
* Total number of frames
Do we skip frames?
 Summarizing performance; everyone does it differently
 How do we compare fairly? Re-run every time?!?
* Reporting performance during learning is ideal

 ALE is totally deterministic!

Summarizing performance
Deep dive

* Overall: more data->better policies

 But what do we want: learning speed, peak performance, stability, never-
ending improvement?

 Many possible options:
* Evaluation after learning
* Evaluating the best policy

* Area under the learning curve

Test performance

How good is the greedy policy

* Train, freeze learning, then average score over test episodes

* Obscures sample efficiency

* Agent could mostly explore during “training” then switch to eval. policy

* Nature DQN periodically evaluated the greedy policy, only reporting best

evaluation results over all training

» stablility problems

Score

20000

15000¢

A)
10000} , BBy Y

9
5000t

Do
: A

- -

~ "-‘Q\M

- A

0

50M 100M 150M
Timestep

(a) Sarsa(A) + Blob-PROST

200M

3500f |,
30004\

f ' ; NS AT LA ;

\ I 1A Y \ Y
|) \ | 2 N\ 1 e (O \ Y\ 1 /)

2500l | A\ 4 /L M0 e g |
| L [AN IS . \ y |\ N ([
| | \ 0y | Y '
[|
Y \ A ‘wl v n 1 ‘

| AN RN A TV W T
O 2000 | SFANAT VT |
U ' |
U 1500}
1000}

500¢

50M 100M 150M 200M
Timestep

(b) DQN

Performance during training
Return to good-old-fashion RL

 Reward/score plotted against training time... on test episodes?

e Then take the area under the curve

* Short-run good performance de-emphasized

100M 150M 200M 50M 100M
Timestep Timestep

 Plummeting might not be well captured (2 Sarsa(A) + Blob-PROST) DO
* High-variance not always well captured... more in coming lectures
 Reward periodically during training...no tests

* Average of last k episodes (continual learning)

Determinism & stochasticity

Atari is totally deterministic

* Deterministic start states, deterministic outcomes given a sequence of actions

* Agent’s can exploit this...do we care? (e.g., same is true for Mountain Car)

* Hydra architecture and GoExplore exploit this

* “The Brute” maintains a partial history of trajectories to compute models and does Dynamic

programming to find the best trajectory so far
e Such deterministic agents are often not robust

* The real problem is non-standard injection of stochasticity:

e e.d., human starts, random

Deterministic Rand_Init ~ Random

* Paper recommends sticky actions: small prob that prior action is executed again

-
nnnnnnn

of no-ops (no effect or huge), forced random actions, etc ..

A new set of benchmark results
Blob what?

Game 10M frames : 50M frames : 100M frames : 200M frames
ASTERIX 2,088.3 (302.5) @ 3,411.0 (413.5) : 3,768.1 (312.5) : 4,395.2 (460.7)
- BEaM RIDER | 1,149.1 (235.2) : 1,851.2 (406.7) : 2,116.4 (516.0) : 2,231.9 (470.5)
R M el .(.5....1.). o (03) ' 3179 (O 2) 3R (02)
B S .(.2.2.2...2.). . 19045 '('1”8'9'.8)” . 8571 .(.3.3.7...9.). . 14081 .(.3.0.1.;7.). .
~ SPACE INVADERS | 458.2 (23.8) :© 5829 (30.7) : 661.6 (51.4) ° 759.7 (43.9)

Table 3: Results on the ALE’s original training set using Sarsa(A) 4+ Blob-PROST. Av-
erages over 24 trials are reported and standard deviation over trials is presented between

parenthesis.
Game 10M frames : 50M frames : 100M frames 200M frames
VASTERIX 1,732.6 (314.6) : 3,122.6 (96.4) : 3,423.4 (213.6) : 2,866.8 (1,354.6)
_BeaMm RIDER | 693.9 (111.0) : 4,551.5 (849.1) . 4,977.2 (292.2) : 5,700.5 (362.5)
(FREEWAY | 138 (81) . 317 (0.7) .. .324 (03) : 33.0 (0.3)
_SEAQUEST | 311.5 (36.9) : 1,430.8 (162.3) : 1,573.4 (561.4) : 1,485.7 (740.8)
~ SPACE INVADERS | 211.6 (14.8) 686.6 (37.0) 787.2 (173.3) 823.6 (335.0)

Table 4: Results on the ALE’s original training set using DQN. Averages over 5 trials are
reported and standard deviation over trials is presented between parenthesis.

A new set of benchmark results

Main results

e Sarsa’s perf steadily increases (on in 10% of games is perf worse after 200m)
* |n 38 games no stat. sig. improvement after 100m frames

 DQN: higher variability and did not benefit as much from more data

» But results have low significance overall due to limitations of 5 runs
* QOriginal DQN results were one run!

* Performance drops were algorithm dependent not game dependent

* QOverall perf is very close & sticky actions didn’t hurt either agent

Open problems in ALE

Things Atari should be really good for investigating

* Representation learning:
* Neural-net agents have high sample complexity; especially in sparse reward tasks
* Blob-Prost Sarsa is generally faster
* Prioritized replay, Auxiliary task learning, and intrinsic rewards help
 Many fiddly parameters and specialized compute needed

 More fresh ideas like Generate and Test (http://www.incompleteideas.net/papers/MS-AAAlws-2013.pdf)
and Co-agent networks (http://proceedings.mlr.press/v119/kostas20a/kostas20a.pdf) are needed

2500¢ ' VAV l(f \! f‘f.:T\Ffw;L{ ﬁ_—ﬁrw'_” % Taa' A AEREV S 3.0
VA L B | [[
“ |
| l‘ 2.5
2000} 1 | - J‘ ,
T |
| 4
|
e._) 1500t “\‘ll . 8
o | S 1.5»‘ ‘ \
wn 1
1000' ;I“\ i m ‘ ‘ ‘ ‘
‘” 1.0" ‘
500 ‘ T) ‘ | M‘ | ‘ ’ ‘L\ | | \
T M el] | 1
"\l\‘ l‘“‘ | ““lwh‘l‘ | “ | I
oLl]] ' . 0_0\‘\ LY I M A & TWAAR I AKA MR i WA
50M 100M 150M 200M 50M 100M 150M 200M
Timestep Timestep

(a) Sarsa(A) + Blob-PROST (b) DQN

Open problems

Models and planning
 Most successes in ALE use the emulator—a perfect model

* Unrolling learned, imperfect models is hard

Figure 5: Top row: Rollout obtained with a learned model of the game FREEWAY. Bottom
row: Ground truth. Small errors can be noticed (¢ + 15) but major errors are observed

Open problems

The rest ...

(a) SPACE INVADERS (b) DEMON ATTACK

 Exploration: Thompson sampling, Optimistic Exp for NNs, model error,
counts

* Transfer. we can transfer between similar games in a general way:
* Not the policy, the value function, the representation ...

* Promising empirical study: https://arxiv.org/pdf/1810.00123.pdf

* Options and temporal abstraction: learning macro actions

o Off-policy learning: we do it (Q-learning & replay), but potential, is unrealized
due to stability, SOTA focus, and biases of researchers

https://arxiv.org/pdf/1810.00123.pdf

A long-time ago ...

When nobody used GPUs, Neural nets were unpopular and people still used Mountain Car

 Empirical work can yield inflated results & specialization to particular problems
* Can you imagine spending all your time on puddle world?
* Consider the usual setup: say MC, average reward averaged over runs
 We can engineer the features, value func. init. & learning rate for MC
 The same setting could be poor in puddle world, or something else (see why ALE is great)
e Single environment evaluation in RL can be problematic
* |In supervised learning overfitting can be an issue
* |In RL we have environment and evaluation overfitting

 Can be worse in RL, because environments can generate unlimited training data

Historical context
The RL Competition

e Started in 2005, called the NeurlPS Benchmarks and Bakeoffs

* \We built software to standardized evaluation in RL: called RL-Glue

 Each year we improved the software to make it more robust to cheating:
* Environments ran of a server

* Limited interaction with the environment (few trial runs—one a week), then your final
performance runs (limited)

» Signed jar files and code to detect modification and other forms of cheating
* Focus of the competition was online, model-free RL & most importantly research progress

 Problems were selected to represent fundamental, open questions

Admin

 No office hours this week
* Project team list sheet:

* https://docs.google.com/spreadsheets/d/11-
QybvJk5V5dilsHOL9f6eNx5fAROgFEuUekHS94MhE

e Session moderator for today: Mihucz, Gabor

» https://docs.google.com/spreadsheets/d/
1dbmlvduupZUCDixU4HW?2 3500VrVG-g1FoEAG-uWhMk

https://docs.google.com/spreadsheets/d/1f-QybvJk5V5dilsHOL9f6eNx5fAR0gFEuUekHS94MhE
https://docs.google.com/spreadsheets/d/1f-QybvJk5V5dilsHOL9f6eNx5fAR0gFEuUekHS94MhE
https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk
https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk

They still
cheated

Wanted to win Tetris; figured out the model and did Dynamic programming

Our focus back then was general algorithms

Polyathlon competition track

* 5 Continuous state, discrete action problems
* 3 revealed to competitors and available for development
e 2 hidden
* Qverall performance across all 5 determined best, most general agent
 People cheated:
 |f statements to detect which problem to deploy pre-trained agents
 Guessed possible hidden problems and pre-trained agents

* Very similar goals to the ALE!

In the end little Innovation and
research came out of the competitions

Protecting Against Evaluation Overfitting in Empirical
Reinforcement Learning

Whiteson et al (2018)

 Assume the algorithm designer is self interested!

 We want evaluations that free designers from worry about their biases
Impacting evaluation

* |n most cases the numerical results on a particular domain have no actual
external utility:

 nobody cares about scores in Pitfall!

Types of overfitting

Evaluation, environment, data

Experiments suggest utility of the algorithms in some target deployment
Evaluation overfitting: performing well in evaluation but not on the target distribution

Data overfitting: func. learned is customized to the training data, fails to generalize to data sampled
from the same environment

e —not an issue in RL because evaluation is online from environments which are infinite data
generators

Environment overfitting: agent performs well on environment, but poorly on others
* The learning algorithm is overfit rather than the function produced (policy/value-func)
* Target distribution is the distribution over environments

* Access to simulators actually makes this worse

Target distributions

* [ypically involve multiple environments

* Fitting: customizing the algorithm to the target dist. at the expense of dist.
outside it

* QOverfitting: customizing the algorithm to the evaluation at the expense of the
target dist.

Beyond single environments
Can be good or bad

» Single using environments can lead to overfitting

* \We can create a distribution over environments—starting with a single simple
environment like Mountain Car

 We can then sample from this distribution evaluating an agent on multiple
environments

e Generalized Environments
o G =<0, u>

® (O s the set of environments and U is the distribution over the set

Example: Helicopter hovering

* Each trial/run the agent faces a new environment:

 Unknown wind velocity

Environment used in the RL competition

Generalized environments

Saves us from ourselves, clear experiments

 No amount of tuning can eliminate the uncertainty represented by G.
e =>falr comparisons between agents
 Makes explicit what generality is desired:

* choice of G specifies both a target class & importance of environments in
that class

How this might work

Saves us from ourselves, clear experiments

* Agent designer knows G
 They can sample freely from G and tune their agent
 Then the test phase:

 For N trials, sample an environment from G

* [rain and evaluate agent

* Designer does not know exactly which environments the agent will face

Secret Generalized Environments

Don’t khow G

* Perhaps your are thinking about deployment: flying a helicopter
 We don'’t really know the wind conditions well
 |If the designer knows G they may overfit to the uncertainty it encodes

* (G can be hidden and access to it limited during tuning

Meta-Generalized Environments

It’s distributions of environments all the way down

* We could have a distribution over a set generalized environments

Summarizing Performance Generalized Environments
Simple averaging won’t due

e Environments could have different reward scales

 Because some environments are harder, run longer, or have different reward
scales

* We could do a sign test

* This question comes up Iin lots of places: competitions, time series
forecasting

e Paper notes people don’t do this in SL

A simple experiment

To evaluate this evaluation scheme

 Compare usual tile coding, tuned by hand, with an adaptive one
 Conventional tile coding: need to know the ranges of the state variables
 The Range-adaptive TC:

* We need to stretch the tile coder, whenever we get a point outside the
range

SO we need to adjust the weights associated with each tile on the fly

 What are the challenges in showing RA-TC is better than TC on just one
environment?

Generalized classic control

* Mountain Car, Acrobot, and Puddle World

 Each is a generalized environment:
e uniform(-n,n) applied to action, sampled from uniform(0,.5)
* Transformation function applied to observation (scale, invert, translate,...)
 Random starts or not

 Compare fixed-range TC, adaptive-range TC, and cheater TC

Tuning agent procedure

So much compute

« Sample 25 generalized environments
* Jest each type of agent for one trial on each environment, sweeping:
* Alpha\in {2.0, 1.0, .75, .5, .25, .125, 0.06125}
 Lambda\in {.99, .95, .9, .75, .5, .25, .125, .06125, 0}
* Tiles\in {4,8,16,32}
* Tilings \in {4,8,16,32}
* And some other stuff ...
3024 configurations, 70k time steps

 Candidate tuned agent was the best across generalized environments

g\/lountain Car Acrobot 1 Puddle World
e : — . : ' v -
Results 0T = E) _ Jf¢ 0T
O + 7 1 _ L
= U) + l I
Adaption matters o L | N
1 ’ ' :
\./_10 i + I l
(()) t 1
2
@) | |
I
§' | : 102 :
- : -10°| f : i
®_10 I +
0_ +
O . . +
(4V]
> !
m -
Y | X e 1 | . 1 . .
A B C A B C A B C

Fig. 2. Generalized methodology results for the adaptive (A), baseline (B),
and cheater (C') approaches on three generalized environments.

 Each tuned agent was tested on 100 additional environments

Results summary

Relevant today

» Clear experiment showing the adaptive method is useful & non-adaptive
method—even with tuning—was not as effective

 Enormous compute required

* Open problem on how to exactly aggregate performance across environments

* |s this close to what we are getting with the Atari (ALE) or AlGym problem
sets?

* Could we do this with modern large scale domains? Would it lead to more
general agents?

Don’t over-focus on benchmarks

A

However, several researchers have also raised concerns
about overemphasizing empirical results. To our knowledge,
Falkenauer [7] was the first to identify the problem of en-
vironment overfitting (which he called “method overfitting™).
Similarly, Ponce et al. [8] point out that public data sets can
become stale and Langtford [9] enumerates many types of
overfitting, some of which are special cases of environment
overfitting. Others have pointed out statistical problems in
typical evaluations [22] or bemoaned the emphasis they create
on software engineering instead of research innovation [26].
Drummond and Japkowicz [6] liken statistical benchmarking
to an addiction and argue it i1s time to “kick the habit.”

Overfitting, target dists & ALE

 Whiteson: research towards general agents
* with good evaluation methodology & Mountain Car
 ALE : a challenge problem to inspire research towards general agents
 ALE research fell victim to bad evaluation methodology
* [wo Insights here:
* evaluation & environment overfitting in ALE can happen, just like MC!

 empirical methodology is a constant back & forth

Your questions

* Average reward: What are good options for environments to test these algs
on”? (Not the 2-cycle world)

 What’s a good performance measure?
 What topographical structure are these TD networks constraint to have?

* |n the black and white world example to illustrate the need for tracking in
stationary problems - How exactly is tracking incorporated in the final
implementation?

 What are some pitfalls in randomly generating procedural (chain) MDPs and
Gridworlds?

