
Start recording …

Real-time learning, from human reward!

https://www.youtube.com/watch?v=CkTftoNFeGY

Predictive knowledge on a robot

“Wall ahead” is a
sensorimotor fact

bump
data

Predicting: Will rolling forward
soon result in a bump?

bump
data

bump
pred

Predicting right and left bumps

left bump

right bump

both bump

datapred

Admin

• Next week is spring break; no lecture, no office hours

• Session moderators for today: Bashir, Zahra

• https://docs.google.com/spreadsheets/d/
1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk

https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk
https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk

The Data of RL

Imagine you developed an new algorithm

• One of the primary ways to understand and evaluate your new idea is via experiments

• There are many things you might want to know:

• Is my implementation correct?

• Does the method converge to the correct thing?

• How does the performance vary as a function of initialization, hyper parameters,
and design choices?

• The limitations of the idea?

• Lastly, if it is better in some measurable, reliable, relevant way?

Start with the problem

• Common failure:

• Spend time developing a new approach, and adjusting your experiments to
illustrate the new approach works and works well

• Someone points out a missing baseline or alternative approach

• The baseline is better than all the other algorithms tested

• Alternative strategy:

• Start with the open problem

• Show that baselines fail or have some important limitations

Example: step-size adaption

Example: sound off-policy control

What to measure, what to plot?

• There are always multiple views into an experiment;

• There are many dimensions over which a new idea might be relevant

• This about what aspect is relevant to you and your problem:

• Final value-function/policy quality/accuracy

• Speed of learning

• Insensitivity to hyperparameters

• Robustness

• Problem specific metrics

• Just in case: plot everything!

Example: a more stable control algorithm

Example: clear change in behavior

Example: where interference in happening in a network

Ultimately we end up comparing things

• SOTA competitor, natural baseline, or calibration agent

• We need to measure something & compare agents

• This is not about winning and losing … its about telling the story of the data

• To tell the story accurately:

• Properly reflect uncertainty

• Properly how hard it was to get good performance

• Properly reflect the impact of all choices

• Stretch: properly reflect how well these algorithms might work in the real-world

Ultimately we end up comparing things

• SOTA competitor, natural baseline, or calibration agent

• We need to measure something & compare agents

• This is not about winning and losing … its about telling the story of the data

• To tell the story accurately:

• Properly reflect uncertainty

• Properly how hard it was to get good performance

• Properly reflect the impact of all choices

• Stretch: properly reflect how well these algorithms might work in the real-world

Are our algorithms practically useful?

• Mountain Car, Sarsa(lambda) with tile coding

• Fixed start state, 0.5 decaying step size, 10 tilings 10x10

Without repetition we can say so little

• Experiment repetition is so important

• We don’t want the results to be skewed by one algorithm getting lucky

• Remember the MAB in Sutton&Barto…on some runs greedy is optimal

• We want to use statistical tools to talk about aggregate performance

• Hopefully we can build more reliable algorithms

• But we often need to look deeper to understand the mean & variance

The raw data can tell different stories

The raw data can tell different stories

• 50 runs, 300 steps

• Credit: Andy
Patterson

mean +- stderr raw data

Which data/alg would you prefer?

Agents & Environments are data generators

• If we want to make statistical statements about the data, then we have to
understand what it looks like

• We want to turn a learning curve for a single run into a number

• The first step is deciding on a measure of performance:

• Total area under the learning curve (AUC)

• AUC of the large x% of the data

• Other measures focused on stability are also possible 
but we will start with the classic ones

6.3. Optimality of TD(0) 127

the learning curves shown in Figure 6.2. Note that the batch TD method was consistently
better than the batch Monte Carlo method.

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD
MC

BATCH TRAINING

Walks / Episodes

RMS error,
averaged
over states

Figure 6.2: Performance of TD(0) and constant-↵
MC under batch training on the random walk task.

Under batch training, constant-↵
MC converges to values, V (s), that
are sample averages of the actual re-
turns experienced after visiting each
state s. These are optimal estimates
in the sense that they minimize the
mean-squared error from the actual
returns in the training set. In this
sense it is surprising that the batch
TD method was able to perform
better according to the root mean-
squared error measure shown in the
figure to the right. How is it that
batch TD was able to perform better
than this optimal method? The an-
swer is that the Monte Carlo method
is optimal only in a limited way, and
that TD is optimal in a way that is more relevant to predicting returns.

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A, 0, B, 0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

This means that the first episode started in state A, transitioned to B with a reward of
0, and then terminated from B with a reward of 0. The other seven episodes were even
shorter, starting from B and terminating immediately. Given this batch of data, what
would you say are the optimal predictions, the best values for the estimates V (A) and
V (B)? Everyone would probably agree that the optimal value for V (B) is 3

4
, because six

out of the eight times in state B the process terminated immediately with a return of 1,
and the other two times in B the process terminated immediately with a return of 0.

But what is the optimal value for the estimate V (A) given this data? Here there are

A B

r = 1

100%

75%

25%

r = 0

r = 0

two reasonable answers. One is to observe that 100% of the
times the process was in state A it traversed immediately to
B (with a reward of 0); and because we have already decided
that B has value 3

4
, therefore A must have value 3

4
as well.

One way of viewing this answer is that it is based on first
modeling the Markov process, in this case as shown to the
right, and then computing the correct estimates given the
model, which indeed in this case gives V (A) = 3

4
. This is

also the answer that batch TD(0) gives.

Getting one number

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD
MC

BATCH TRAINING

Walks / Episodes

RMS error,

over states

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD
MC

BATCH TRAINING

Walks / Episodes

RMS error,

over states

These are importantly different when sweeping hyper-parameters

The distribution of performance

• Given a set of AUC, one for each run, what does the distribution of those numbers look
like?

• Bell shaped / Normal /Gaussian

• Skewed

• Multi-modal

• Flat or point mass?

• Practical tip: set the seed for the environment and the agent independently, and use the
run number for reproducibility

• What should we do about the hyper parameters?

Your questions

• Should we have a special conference / event for competitive testing?

• Generative vs Discriminative models: http://robotics.stanford.edu/~ang/papers/nips01-
discriminativegenerative.pdf

• There is a relationship here to TD vs MC

• For the RL context think of Model-based methods (e.g., DP) vs model-free

• Models that allow temporal abstraction (thinking jumps); challenges

• Discovery problem (where do the options come from)

• Off-policy learning: learning option policy and models in parallel

• Using them for planning: open question

http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

Your questions

• In Deep RL the Matters paper: TRPO on swimmer -> bad policy

• Can we check this automatically? What’s the problem?

• Can we build this into the environment? Isn’t it already?

• More examples

• Does Whiteson et al’s generalized environments pose a problem for current
theory of RL with function approximation?

• Is the average reward formalism or algorithms useful in episodic tasks?

Your questions

• Why do we need off-policy learning?

• Tips on writing

• Tips or ideas for visualization

Admin

• Next week is spring break; no lecture, no office hours

• Session moderators for today: Tiriac,Valentin

• https://docs.google.com/spreadsheets/d/
1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk

• Your job is to ask questions and moderate discussion!

• If you cannot make your session, tell me ahead of time

https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk
https://docs.google.com/spreadsheets/d/1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk

Plan for today

• Continue our discussion about the distributions generated by RL
experiments and why you should care

• A crash course in good presentations

• Discuss your questions & project standups

The distribution of performance

• Given a set of AUC, one for each run, what does the distribution of those numbers look
like?

• Bell shaped / Normal /Gaussian

• Skewed

• Multi-modal

• Flat or point mass?

• Practical tip: set the seed for the environment and the agent independently, and use the
run number for reproducibility

• What should we do about the hyper parameters?

How many runs do we need?

• Common practice is 3

• In the literature you can find up to thousands of runs

• Let’s run an experiment:

• Mountain Car with random starts

• Sarsa(lambda) with tile coding — reasonable hyper parameter choices

• We will plot mean episodic return over 250 episodes

• What story does the data tell?

What if we did 3 runs?

• Histogram of mean episodic
return over 100k steps
(around 250 episodes)

What if we did 5 runs?

• Histogram of mean episodic
return over 100k steps
(around 250 episodes)

Many runs are needed to see the shape of the distribution

• Histogram of mean episodic return over 100k steps (around 250 episodes)

• Estimating the agent’s performance accurately requires many independent
repetitions of the experiment

Environments design choices matter too

• Notice how the distribution was a bit skewed, not perfectly bell shaped

• We can get other distribution shapes by including cutoffs:

• Restarting the episode if the agent reaches a max number of steps

• This ensures the no episodes a really bad—might make bad agents look
good

• This gives free exploration—especially if random starting states are used

Cut-offs skew performance

Regular MC->

MC w cut-offs->

• 1000 step episode max

Every agent & environment pair can be different

• Same experiment and setup in Puddle world:

• Mountain car:

Design choices interact
• Mountain car with two different start states:

• Mountain car with two start states and cutoffs:

Experiment design choices interact too

• In the prior plots we always ran 100k steps, and looked at the dist with more
and more runs

• We can also look at the dist with more and more episodes (MC) …

With and without cut-offs (median)

In puddle world we see impact of performance metric

A closer look at cut-offs in puddle world

Bi-modality can even happen without explicit effort

• Mountain car with 3 different algorithms and a
Neural Network (2 layer, 32 hidden units, relu)

• Max episode length=1000, 100k steps total

• Agent hypers:

• epsilon=0.1

• Adam with beta_1 = 0.9 and beta_2=0.999

• buffer_size = 4000, batch_size=32

• No target nets

Controlling randomness

• Typically both the agent and environment have different sources of
randomness:

• In mountain car the start states, and epsilon in the agent for example

• We can decide to control these sources of randomness or not:

• Controlled means the seed to the agent/env random number generator is
set with the run_number

• There are 4 possibilities for controlling and not controlling each

Controlling
randomness:
comparing the same
algorithm (250 runs)

Controlling
randomness:
comparing Q-learning
and Sarsa

Sarsa > Qlearning here

Controlling
randomness:
comparing Q-learning
and Sarsa 
 
but with only 5 runs

Qlearning looks better than before—>

Why it all matters

• We can’t always show all the data

• Worse: depending on experiment, environment, and agent design choices the
data will all be different

• We will be left with mountains of data; dozens of plots

• That’s no fun for us, and certainly no good for a paper

• We want to aggregate the data, and use statistical tools like hypothesis tests
and confidence intervals to make broader conclusions

You can’t just compute
error bars and report

p-values blindly

Hypothesis testing

• Let’s say we draw samples from two population, with true means m_0 and m_1

• We estimate the mean of each population: bar{x_0}, bar{x_1}

• Then we want to determine if the populations have different means

• We use a hypothesis test:

• Null hypothesis: m_0-m_1 = 0 (the true means are the same)

• Alternative hypothesis: m_0-m_1 != 0 (the true means differ)

• We want to reject the null hypothesis!

How probable is it to observe this sample or a more
extreme one, given that there is no true difference

in the performances of both algorithms?

The p-value is that probability: to reject the null we
want it to be extremely unlikely that we observe
differences in the sample means given that the

algorithms indeed perform differently!

If your p-value is high, then your evidence (data) does
not provide enough support to reject the null

Hypothesis testing

• Let X_1 be the random variable denoting the performance of algorithm_1

• Let X_2 be the random variable denoting the performance of algorithm_2

• If we assume X_1 and X_2 are normally distributed

• Therefore X_{diff} = X_1-X_2 is normally distributed

• We want many samples of X_{diff} (say 30 or more)

Hypothesis testing procedure

• Let , be a sequence of RV representing runs of the experiment and  
 = average of

• True distribution over the differences: is density

• Sample // we run an experiment

• Assume null hypothesis: is defined such that

• This is the hypothesized model of

• E.g., might be a mean-zero Gaussian over

• Question: how likely is under H_0 
i.e., how likely is it that we would see or a more extreme value:  

 (if unlikely, then our model likely wrong)

Xdiff,1 Xdiff,2
X̄diff Xdiff,1:n

X̄diff ∼ ptrue, i . e . , p(x̄diff)

x̄diff,0

pnull 𝔼[X̄diff] = 0

ptrue

pnull x̄diff

x̄diff,0
x̄diff,0

pnull(X̄diff > x̄diff) \bar{x}_{diff}

Is the difference significant?

A difference is called significant at significance level \alpha/2 when the
p-value is lower than \alpha/2

Key assumptions in hypothesis testing

• We most often use a t-test (and standard error bars)

• They assume the distributions of performance are Normal

• Performance is measured at random and independently from one another
(each agent)

• Same sample size

• Continuous and bounded performance distributions

• Equal standard deviations

Break time
Then part II: giving presentations

Tips for giving research talks
Giving a good talk is hard!

• It is stressful; there are factors out of your control

• You are worried if your content is correct/accurate and if your style is clear and
effective

• Everyone is different styles and preferences

• It is very easy to sit back and critique someone’s talk—much easier than giving a
good one yourself

• Worst of all: we have to perform

• Good talks require a balance of: good content, dynamic delivery, clear & simple
imagery, and lots empathy for the audience

High-level strategy: be simple and direct
Assume the audience will not follow a complex story

• You are too close: You know so much about the details over your work

• The audience barely knowns anything: about your specific project

• They are easily distracted ad easily confused

• Make the talk structure simple

• Make the messages simple and direct: don’t imply say what you mean

• Try to get across ONE (15min or less); TWO (20-30min); THREE (>30min)  
main messages

Talk structure
Tell them where things are going, again and again

• Start with a title slide:

• Explain the title—like define the words

• Retell the story of the research; perhaps how it all start or the main learning

• Note collaborators (with pictures) and where you did the work

Talk structure
Motivate your work strongly

• Use the next few slides to define your problem more informally

• Focus on why the problem is interesting and hard

• Focus on why solving it matters (useful in another algorithm, real application…)

• Use pictures and diagrams to help people visualize the story

• Less text in this part of the talk is better

• Try to think of an overall theme or story to help keep attention

• Strongly connect with prior work

• This is your introduction

Make an outline
Tell them where you are going again

• E.g.: “1. Why we need step-size adaption, and what has been done before; 2. Step-
size adaption for online temporal difference learning, … “

• Avoid meaningless categories, like: “1. Motivation; 2. Related work; 3. Algorithm …”

• Helps the read know what is coming next and also functions as the main take-home
messages of the talk

• I like to do it as:

Empty boxes

That get checked off as we go through the talk

Successes and lessons
related specifically to:

Hardware

Data collection and control

Learning setup

Evaluating progress

EXAMPLE

Never define more than you need
There is a jargon budget and a notation budget

• Think of the minimal set of notations and equations your can use to convey
the technical aspects of your work

• Same goes for terminology:

• Do you need to define “online-aware” algorithms

• Or can you always just describe what that means in simple plain English
words

• This minimalist principle applies to figures, diagrams, results, algorithms and
conclusions

Continually check in on your audience
You have already lost them

• Go back to your outline and recap what stage of the talk we are at

• What are the conclusions so far

• Plan to ask the audience questions; perhaps with slides

• Have single slide messages (a slide with one line of text in large font)

• Never show them equations, diagrams or figures you plan to rush through or skip

• “Anyway lets skip to the bottom of the derivation”

• “Ignore all those other lines and subplots …”

• Take the time to view the work from the audiences perspective

Describing algorithms
Think of the key details

• Code blocks are rarely useful

• Try to describe at a high level the main ideas of the algorithm

• Walk through the algorithm in increasing levels of detail:

• Slide 1: three line English description of the algorithm

• Slide 2: sub-bullets describing each component in more detail

• Slide 3: perhaps introduce notation and equations

• Try to make a block diagram of your algorithm and refer to it at all
three levels of the description

7.3. n-step O↵-policy Learning 149

For example, if any one of the actions would never be taken by ⇡ (i.e., ⇡(Ak|Sk) = 0) then
the n-step return should be given zero weight and be totally ignored. On the other hand,
if by chance an action is taken that ⇡ would take with much greater probability than b
does, then this will increase the weight that would otherwise be given to the return. This
makes sense because that action is characteristic of ⇡ (and therefore we want to learn
about it) but is selected only rarely by b and thus rarely appears in the data. To make
up for this we have to over-weight it when it does occur. Note that if the two policies
are actually the same (the on-policy case) then the importance sampling ratio is always
1. Thus our new update (7.9) generalizes and can completely replace our earlier n-step
TD update. Similarly, our previous n-step Sarsa update can be completely replaced by a
simple o↵-policy form:

Qt+n(St, At)
.
= Qt+n�1(St, At) + ↵⇢t+1:t+n [Gt:t+n � Qt+n�1(St, At)] , (7.11)

for 0 t < T . Note that the importance sampling ratio here starts and ends one step
later than for n-step TD (7.9). This is because here we are updating a state–action
pair. We do not have to care how likely we were to select the action; now that we have
selected it we want to learn fully from what happens, with importance sampling only for
subsequent actions. Pseudocode for the full algorithm is shown in the box below.

O↵-policy n-step Sarsa for estimating Q ⇡ q⇤ or q⇡

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s 2 S, a 2 A

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A

Initialize ⇡ to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size ↵ 2 (0, 1], a positive integer n

All store and access operations (for St, At, and Rt) can take their index mod n + 1

Loop for each episode:
Initialize and store S0 6= terminal
Select and store an action A0 ⇠ b(·|S0)
T 1
Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take action At

| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then:
| T t + 1
| else:
| Select and store an action At+1 ⇠ b(·|St+1)
| ⌧ t� n + 1 (⌧ is the time whose estimate is being updated)
| If ⌧ � 0:

| ⇢
Qmin(⌧+n,T�1)

i=⌧+1
⇡(Ai|Si)
b(Ai|Si)

(⇢⌧+1:⌧+n)

| G
Pmin(⌧+n,T)

i=⌧+1 �
i�⌧�1

Ri

| If ⌧ + n < T , then: G G + �
n
Q(S⌧+n, A⌧+n) (G⌧ :⌧+n)

| Q(S⌧ , A⌧) Q(S⌧ , A⌧) + ↵⇢ [G�Q(S⌧ , A⌧)]
| If ⇡ is being learned, then ensure that ⇡(·|S⌧) is greedy wrt Q

Until ⌧ = T � 1

8.2. Dyna: Integrated Planning, Acting, and Learning 163

During planning, the Q-planning algorithm randomly samples only from state–action
pairs that have previously been experienced (in Step 1), so the model is never queried
with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example,
is shown in Figure 8.1. The central column represents the basic interaction between
agent and environment, giving rise to a trajectory of real experience. The arrow on the
left of the figure represents direct reinforcement learning operating on real experience to
improve the value function and the policy. On the right are model-based processes. The
model is learned from real experience and gives rise to simulated experience. We use the
term search control to refer to the process that selects the starting states and actions
for the simulated experiences generated by the model. Finally, planning is achieved by
applying reinforcement learning methods to the simulated experiences just as if they had
really happened. Typically, as in Dyna-Q, the same reinforcement learning method is
used both for learning from real experience and for planning from simulated experience.
The reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that they share
almost all the same machinery, di↵ering only in the source of their experience.

real

direct RL
update

Model

planning update

search
control

Policy/value functions

experience
model

learning

Environment

simulated
experience

Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, a↵ects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously
and in parallel in Dyna agents. For concreteness and implementation on a serial computer,
however, we fully specify the order in which they occur within a time step. In Dyna-Q,
the acting, model-learning, and direct RL processes require little computation, and we
assume they consume just a fraction of the time. The remaining time in each step can be
devoted to the planning process, which is inherently computation-intensive. Let us assume
that there is time in each step, after acting, model-learning, and direct RL, to complete

Describing algorithms
If you are gonna do it…

• Cover up parts of the code and uncover them as you go

• Use color, highlighting and blocks to emphasize particular details

• Walk them through the algorithm; take the agent’s point of view

• Tell them why it is import to understand the algorithm at this level of detail

7.3. n-step O↵-policy Learning 149

For example, if any one of the actions would never be taken by ⇡ (i.e., ⇡(Ak|Sk) = 0) then
the n-step return should be given zero weight and be totally ignored. On the other hand,
if by chance an action is taken that ⇡ would take with much greater probability than b
does, then this will increase the weight that would otherwise be given to the return. This
makes sense because that action is characteristic of ⇡ (and therefore we want to learn
about it) but is selected only rarely by b and thus rarely appears in the data. To make
up for this we have to over-weight it when it does occur. Note that if the two policies
are actually the same (the on-policy case) then the importance sampling ratio is always
1. Thus our new update (7.9) generalizes and can completely replace our earlier n-step
TD update. Similarly, our previous n-step Sarsa update can be completely replaced by a
simple o↵-policy form:

Qt+n(St, At)
.
= Qt+n�1(St, At) + ↵⇢t+1:t+n [Gt:t+n � Qt+n�1(St, At)] , (7.11)

for 0 t < T . Note that the importance sampling ratio here starts and ends one step
later than for n-step TD (7.9). This is because here we are updating a state–action
pair. We do not have to care how likely we were to select the action; now that we have
selected it we want to learn fully from what happens, with importance sampling only for
subsequent actions. Pseudocode for the full algorithm is shown in the box below.

O↵-policy n-step Sarsa for estimating Q ⇡ q⇤ or q⇡

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s 2 S, a 2 A

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A

Initialize ⇡ to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size ↵ 2 (0, 1], a positive integer n

All store and access operations (for St, At, and Rt) can take their index mod n + 1

Loop for each episode:
Initialize and store S0 6= terminal
Select and store an action A0 ⇠ b(·|S0)
T 1
Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take action At

| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then:
| T t + 1
| else:
| Select and store an action At+1 ⇠ b(·|St+1)
| ⌧ t� n + 1 (⌧ is the time whose estimate is being updated)
| If ⌧ � 0:

| ⇢
Qmin(⌧+n,T�1)

i=⌧+1
⇡(Ai|Si)
b(Ai|Si)

(⇢⌧+1:⌧+n)

| G
Pmin(⌧+n,T)

i=⌧+1 �
i�⌧�1

Ri

| If ⌧ + n < T , then: G G + �
n
Q(S⌧+n, A⌧+n) (G⌧ :⌧+n)

| Q(S⌧ , A⌧) Q(S⌧ , A⌧) + ↵⇢ [G�Q(S⌧ , A⌧)]
| If ⇡ is being learned, then ensure that ⇡(·|S⌧) is greedy wrt Q

Until ⌧ = T � 1

Question yourself, for other
Think about what might be confusing to the audience

• As you go through your slides

• As you practice your presentation

• Write down questions an outsider might wonder about:

• “Why couldn’t we just use RMSProp here?”

• “I don’t see why the Hessian would not be invertible?”

• Raise these questions in your talk and answer them:

• “You might be wondering …”

• Related: always arrange your slides and bullets to answer: “what would they want to know
next?”

Presenting empirical results
Take it slow

• First discuss the overall objective of the experiments:

• “We ran three experiments to investigate the our new ….”

• Do everything one at a time:

• One experiment at a time

• First the problem /environment: described without reference to the agent

• Then the solution methods

• Then the way the experiment was set up & run and how the results we processed

• One thing per slide. For example:

Empirically evaluating AdaGain

• We conducted experiments in two domains:

• A state-less tracking problem

• A multi-step prediction problem using real robot data

• The objective of these experiments were (one for each problem):

• To investigate how AdaGain adapts in a continual learning setting
compared with existing approaches

• To evaluate how AdaGain performs with high-dimensional, non-stationary
data

State-less tracking problem

• In this problem the objective is to track the expected value of the target
signal, where the underlying process follows a random walk

• Define the problem precisely …

Algorithms compared

• We compared AdaGain with a mixture of well-know methods from deep
learning, as well as several older methods from the meta-descent literature

• In particular we compared: AdaGain, RMSProp, Adam, SMD, AdaDelta, IDBD,
…

• Explain any particular details of interest

• Highlight key hyper-parameters or implementation details

• This might take multiple slides

Experiment #1: state-less tracking

• We ran each step-size method for 1billion time-steps

• We computed the average reward per step, and average the results over 50
independent runs

• We set the hyper-parameters of each method with an extensive sweep:

• Describe parameters, ranges, and selection criteria

• Use pictures

130 Chapter 6: Temporal-Di↵erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S

+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., "-greedy)
Q(S, A) Q(S, A) + ↵

⇥
R + �Q(S0, A0)�Q(S, A)

⇤

S S0; A A0;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di↵erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
is
od

es

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of �1 until the goal state is reached.

The graph to the right shows the
results of applying "-greedy Sarsa to
this task, with " = 0.1, ↵ = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued "-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be
used here because termination is not guaranteed for all policies. If a policy was ever
found that caused the agent to stay in the same state, then the next episode would
never end. Online learning methods such as Sarsa do not have this problem because they
quickly learn during the episode that such policies are poor, and switch to something
else.

Experiment #1: results

• One plot at a time

• Start with a simple plot that is easy to describe

• Use annotations, colours, arrows, and animations to control the flow of
information and keep everything manageable

• Tell the audience simple things like “up on this plot is good”

• Put the main message of the result at the bottom of the slide…build it in last

Experiment #1: results (only one plot per slide)

130 Chapter 6: Temporal-Di↵erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S

+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., "-greedy)
Q(S, A) Q(S, A) + ↵

⇥
R + �Q(S0, A0)�Q(S, A)

⇤

S S0; A A0;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di↵erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
is
od

es

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of �1 until the goal state is reached.

The graph to the right shows the
results of applying "-greedy Sarsa to
this task, with " = 0.1, ↵ = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued "-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be
used here because termination is not guaranteed for all policies. If a policy was ever
found that caused the agent to stay in the same state, then the next episode would
never end. Online learning methods such as Sarsa do not have this problem because they
quickly learn during the episode that such policies are poor, and switch to something
else.

• Describe axis first

• What would the plot look like for a good algorithm?

• Or for a bad one

Experiment #1: results (only one plot per slide)

130 Chapter 6: Temporal-Di↵erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S

+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., "-greedy)
Q(S, A) Q(S, A) + ↵

⇥
R + �Q(S0, A0)�Q(S, A)

⇤

S S0; A A0;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di↵erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
is
od

es

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of �1 until the goal state is reached.

The graph to the right shows the
results of applying "-greedy Sarsa to
this task, with " = 0.1, ↵ = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued "-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be
used here because termination is not guaranteed for all policies. If a policy was ever
found that caused the agent to stay in the same state, then the next episode would
never end. Online learning methods such as Sarsa do not have this problem because they
quickly learn during the episode that such policies are poor, and switch to something
else.

• Sarsa complete episodes at a faster and faster rate

Sarsa(0)

Big text

• Define error
bars if
included

Experiment #1: results (now comparing algs)

• TD learns faster and reaches lower error…

6.3. Optimality of TD(0) 127

the learning curves shown in Figure 6.2. Note that the batch TD method was consistently
better than the batch Monte Carlo method.

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD
MC

BATCH TRAINING

Walks / Episodes

RMS error,
averaged
over states

Figure 6.2: Performance of TD(0) and constant-↵
MC under batch training on the random walk task.

Under batch training, constant-↵
MC converges to values, V (s), that
are sample averages of the actual re-
turns experienced after visiting each
state s. These are optimal estimates
in the sense that they minimize the
mean-squared error from the actual
returns in the training set. In this
sense it is surprising that the batch
TD method was able to perform
better according to the root mean-
squared error measure shown in the
figure to the right. How is it that
batch TD was able to perform better
than this optimal method? The an-
swer is that the Monte Carlo method
is optimal only in a limited way, and
that TD is optimal in a way that is more relevant to predicting returns.

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A, 0, B, 0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

This means that the first episode started in state A, transitioned to B with a reward of
0, and then terminated from B with a reward of 0. The other seven episodes were even
shorter, starting from B and terminating immediately. Given this batch of data, what
would you say are the optimal predictions, the best values for the estimates V (A) and
V (B)? Everyone would probably agree that the optimal value for V (B) is 3

4
, because six

out of the eight times in state B the process terminated immediately with a return of 1,
and the other two times in B the process terminated immediately with a return of 0.

But what is the optimal value for the estimate V (A) given this data? Here there are

A B

r = 1

100%

75%

25%

r = 0

r = 0

two reasonable answers. One is to observe that 100% of the
times the process was in state A it traversed immediately to
B (with a reward of 0); and because we have already decided
that B has value 3

4
, therefore A must have value 3

4
as well.

One way of viewing this answer is that it is based on first
modeling the Markov process, in this case as shown to the
right, and then computing the correct estimates given the
model, which indeed in this case gives V (A) = 3

4
. This is

also the answer that batch TD(0) gives.

Experiment #1: results (progress to the complex)

• Talk about what each point on the plot means, and the shape

42 Chapter 2: Multi-armed Bandits

2.10 Summary

We have presented in this chapter several simple ways of balancing exploration and
exploitation. The "-greedy methods choose randomly a small fraction of the time, whereas
UCB methods choose deterministically but achieve exploration by subtly favoring at each
step the actions that have so far received fewer samples. Gradient bandit algorithms
estimate not action values, but action preferences, and favor the more preferred actions
in a graded, probabilistic manner using a soft-max distribution. The simple expedient of
initializing estimates optimistically causes even greedy methods to explore significantly.

It is natural to ask which of these methods is best. Although this is a di�cult question
to answer in general, we can certainly run them all on the 10-armed testbed that we
have used throughout this chapter and compare their performances. A complication is
that they all have a parameter; to get a meaningful comparison we have to consider
their performance as a function of their parameter. Our graphs so far have shown the
course of learning over time for each algorithm and parameter setting, to produce a
learning curve for that algorithm and parameter setting. If we plotted learning curves
for all algorithms and all parameter settings, then the graph would be too complex and
crowded to make clear comparisons. Instead we summarize a complete learning curve
by its average value over the 1000 steps; this value is proportional to the area under the
learning curve. Figure 2.6 shows this measure for the various bandit algorithms from
this chapter, each as a function of its own parameter shown on a single scale on the
x-axis. This kind of graph is called a parameter study. Note that the parameter values
are varied by factors of two and presented on a log scale. Note also the characteristic
inverted-U shapes of each algorithm’s performance; all the algorithms perform best at
an intermediate value of their parameter, neither too large nor too small. In assessing

Average
reward

over first
1000 steps

1.5

1.4

1.3

1.2

1.1

1

�-greedy

UCB

gradient
bandit

greedy with
optimistic

initialization
α = 0.1

1 2 41/21/41/81/161/321/641/128

" ↵ c Q0

Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Each point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.

Summarize the results and make conclusion

• DON’T OVER CLAIM

• Tell the high-level take home messages

• Ref specific results as needed

• Talk honestly about limitations and negative results

• We want to tell the story of what happened, not sell someone something

• Presumably you are giving the talk about something with interesting results
not “I invented TD++ and its always worse than TD”—bad topic

Wrap it up and look to the future

• Revisit your outline and take home messages

• Tell the audience we got though everything I wanted to discuss

• This is the way I think you should think about it

• Finish with Future-work / limitations

• All good work is limited—you had to narrow the scope to make progress

• Future work is often about lessening some of those limitations

Low-level advice
• Be prepared for lots of questions: everyone will think and do differently

• That doesn’t matter, but its essential you can explain the “why” of all your choices

• One idea per slide

• Slide titles should be thought of as conclusions or topic sentences

• SLOW DOWN but be excited

• Use running examples “imagine you are driving home in the rain”; keep going back to the
example

• Use bold, italics, and color whenever you want

• There are lots of rules: length of slide titles, bullet punctuation & grammar, slide #’s

• Low priority compared to constructing a simple and engaging talk

The main goal is getting
everyone to understand
what you did and why

The secondary goal is making them believe its a significant contribution

Project standup

• 30second to 5 minute summary of your project

• Thing you are most focused on now

• Open question for the group:

• Anything you are currently stuck on?

