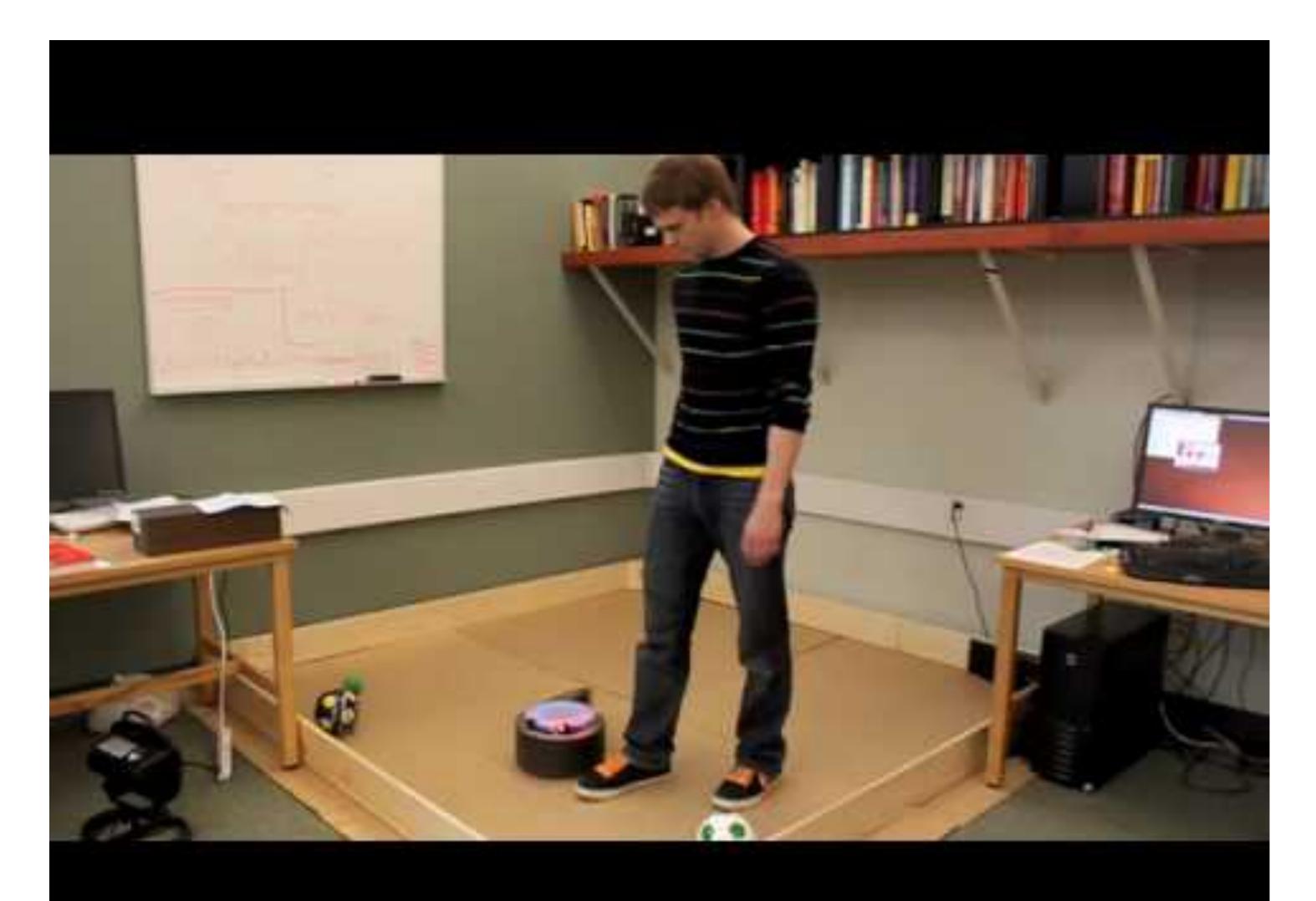
Start recording ...

Real-time learning, from human reward!



Predictive knowledge on a robot

"Wall ahead" is a sensorimotor fact

Predicting:Will rolling forward soon result in a bump?

bump bump pred data

Predicting right and left bumps

Admin

- Next week is spring break; no lecture, no office hours
- Session moderators for today: **Bashir, Zahra**
 - https://docs.google.com/spreadsheets/d/ lacksquare<u>1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk</u>

The Data of RL

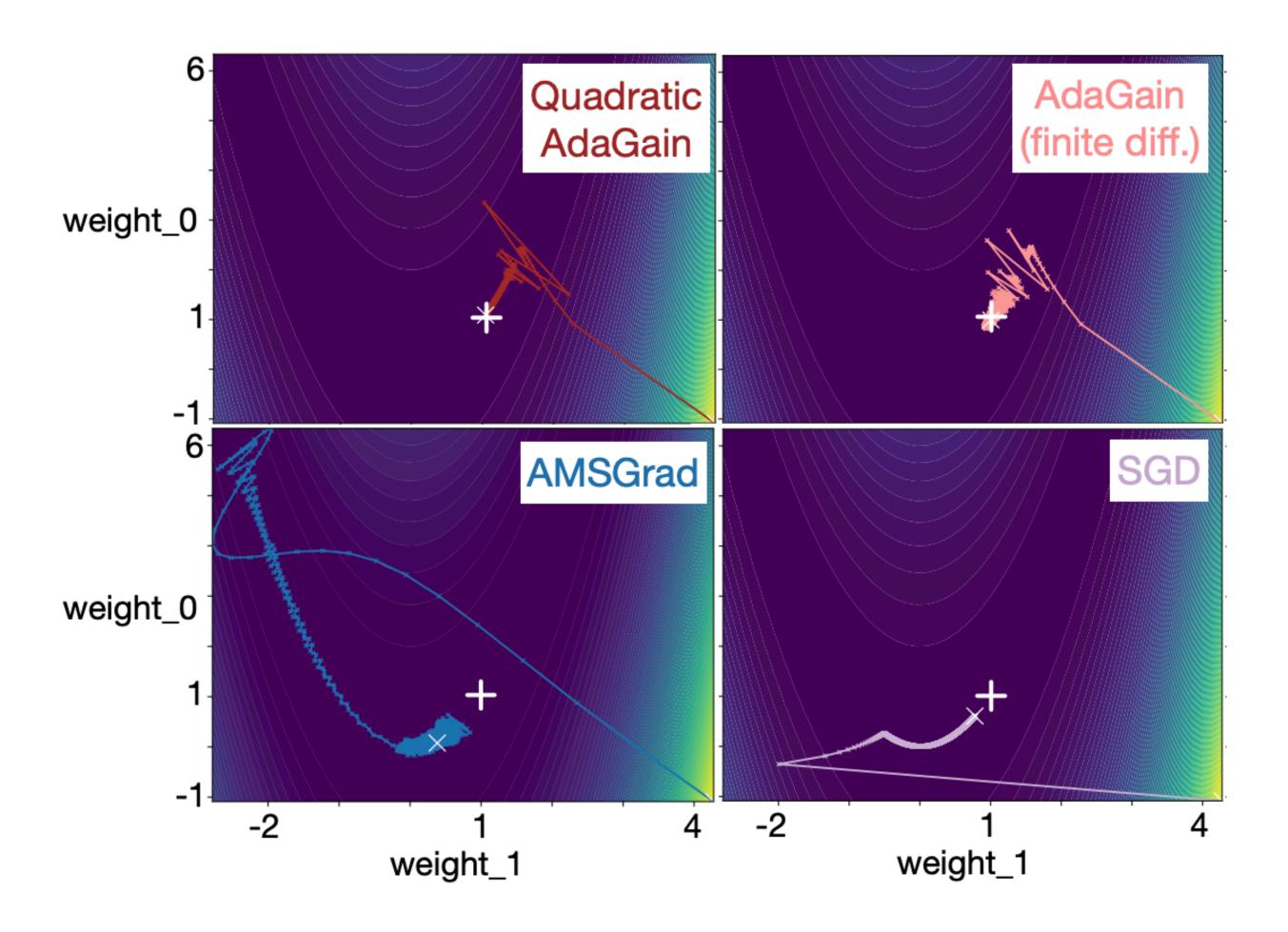
Imagine you developed an new algorithm

- One of the primary ways to understand and evaluate your new idea is via experiments
- There are many things you might want to know:
 - Is my implementation correct?
 - Does the method converge to the correct thing?
 - How does the performance vary as a function of initialization, hyper parameters, and design choices?
 - The limitations of the idea?
 - Lastly, if it is better in some measurable, reliable, relevant way?

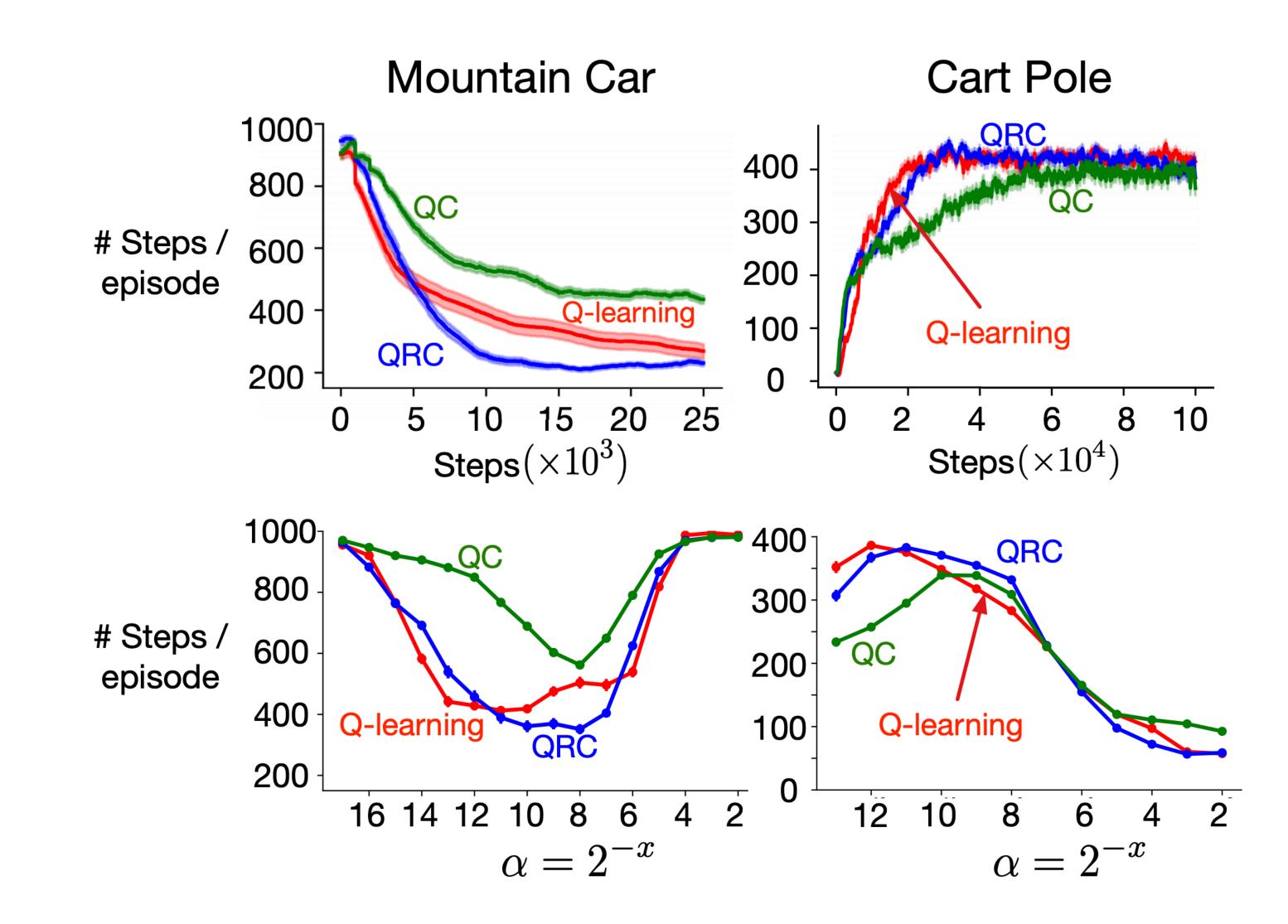
Start with the problem

- Common failure:
 - Spend time developing a new approach, and adjusting your experiments to illustrate the new approach works and works well
 - Someone points out a missing baseline or alternative approach
 - The baseline is better than all the other algorithms tested
- Alternative strategy:
 - Start with the open problem
 - Show that baselines fail or have some important limitations

Example: step-size adaption



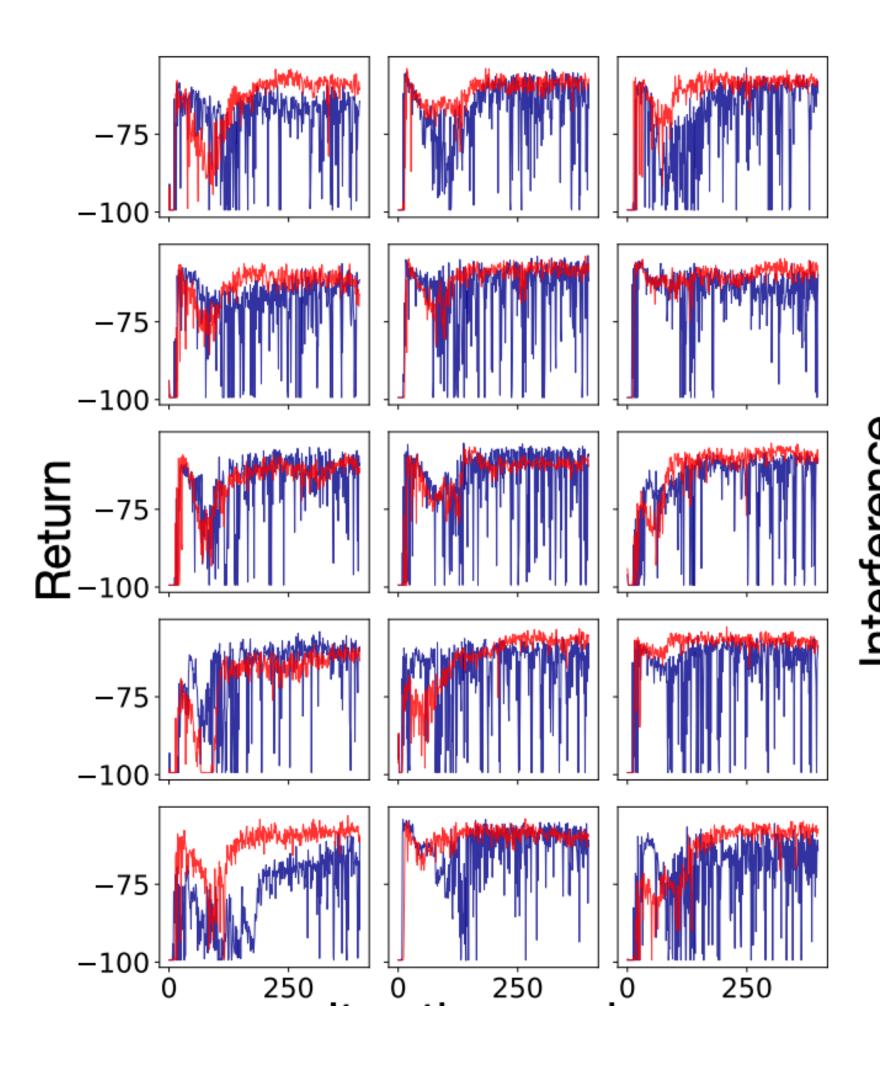
Example: sound off-policy control



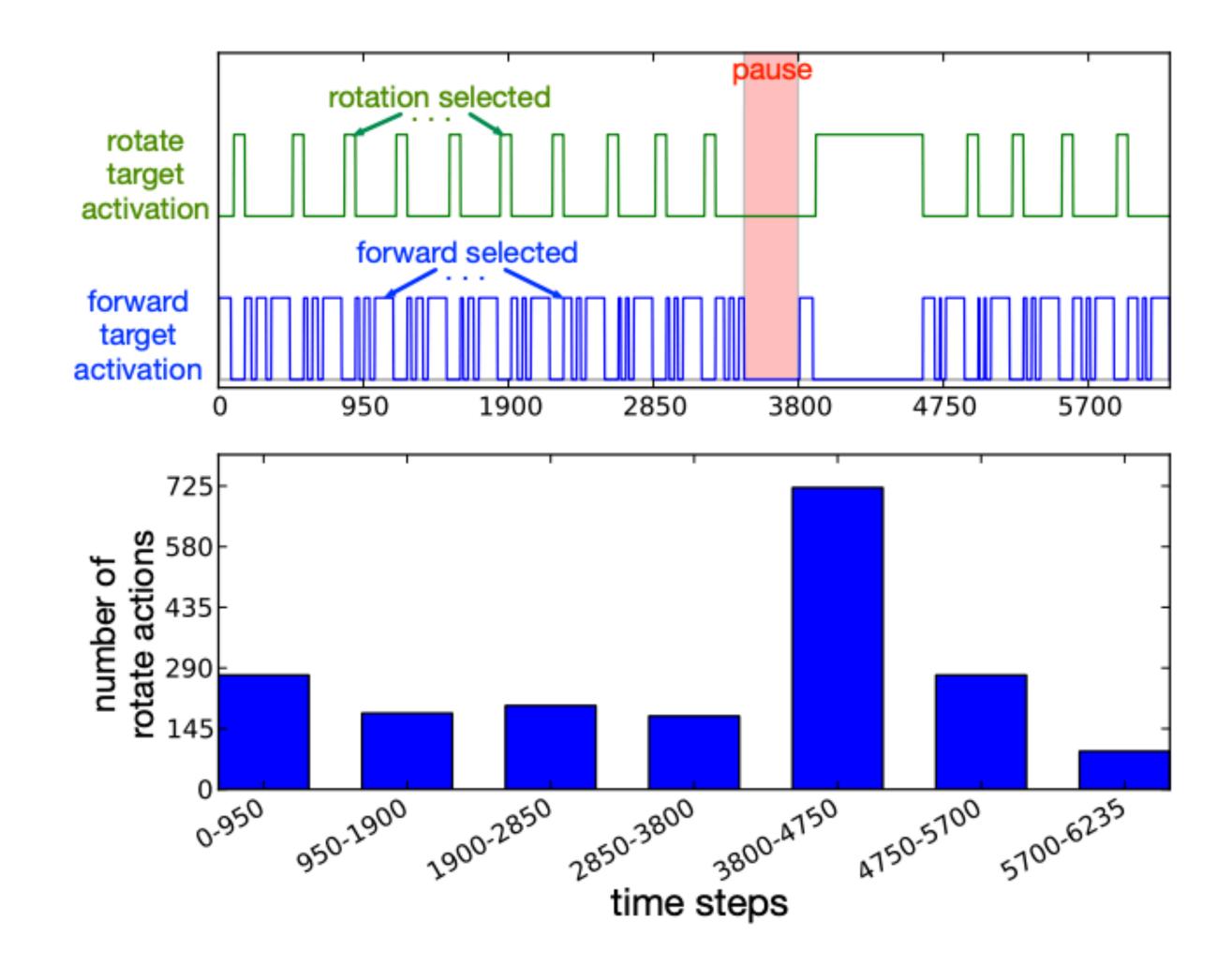
What to measure, what to plot?

- There are always multiple views into an experiment;
 - There are many dimensions over which a new idea might be relevant
- This about what aspect is relevant to you and your problem:
 - Final value-function/policy quality/accuracy
 - Speed of learning
 - Insensitivity to hyperparameters
 - Robustness
 - Problem specific metrics
- Just in case: plot everything!

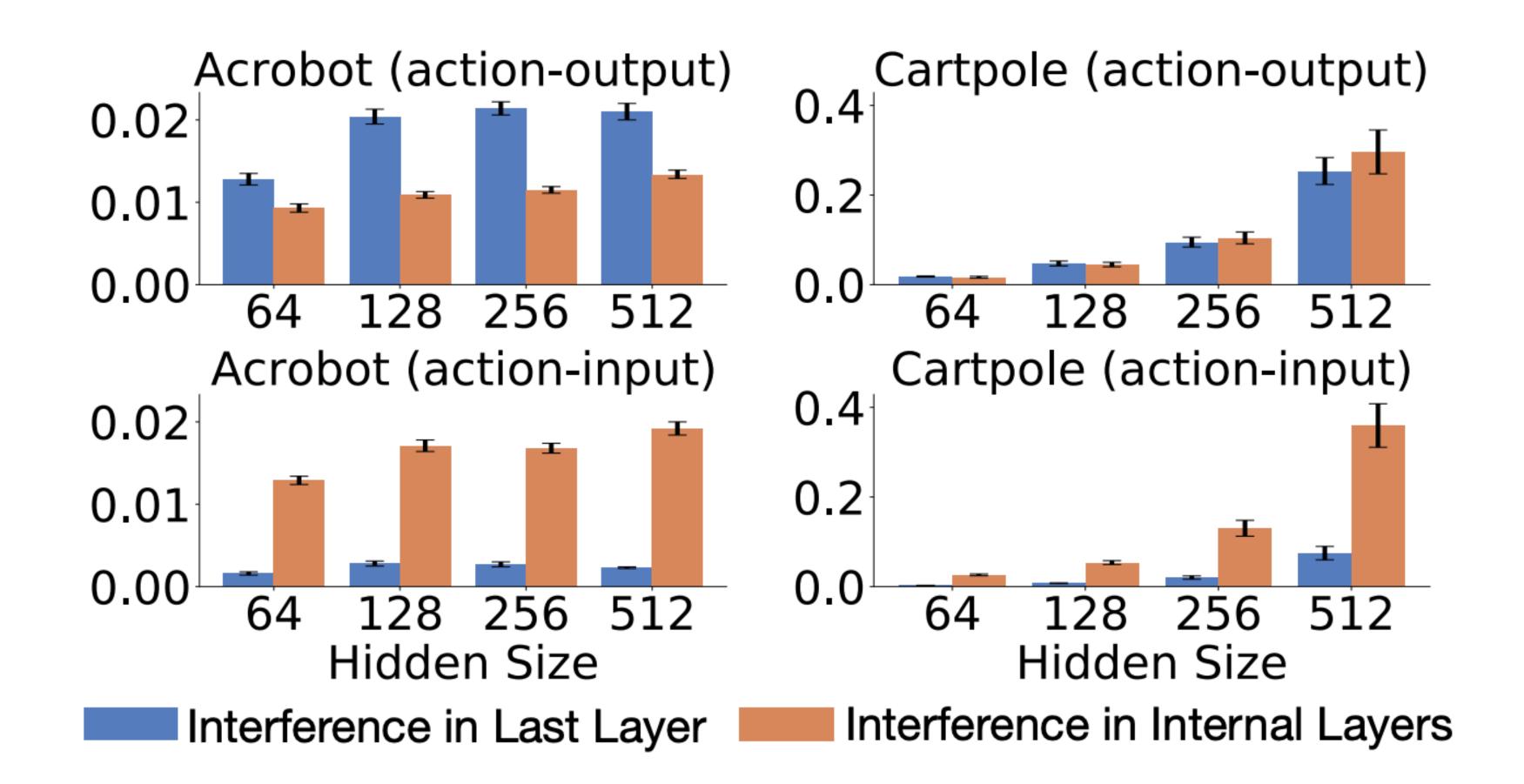
Example: a more stable control algorithm



Example: clear change in behavior



Example: where interference in happening in a network



Ultimately we end up comparing things

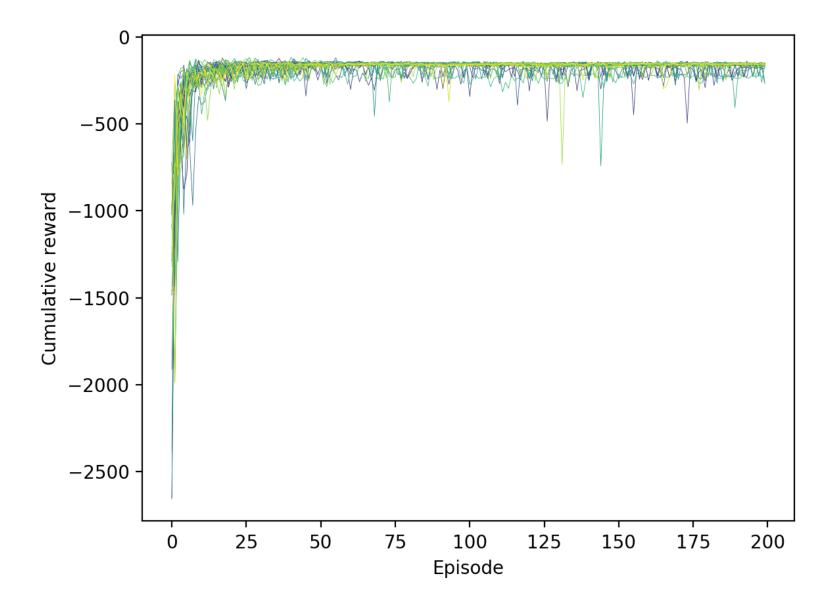
- SOTA competitor, natural baseline, or calibration agent
- We need to measure something & compare agents
- This is not about winning and losing ... its about telling the story of the data
- To tell the story accurately:
 - Properly reflect uncertainty
 - Properly how hard it was to get good performance
 - Properly reflect the impact of all choices
 - Stretch: properly reflect how well these algorithms might work in the real-world

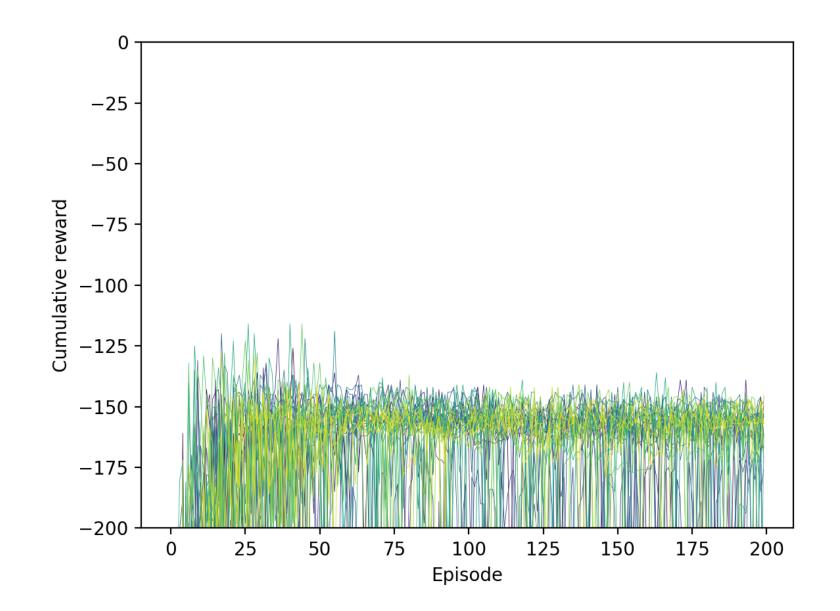
Ultimately we end up comparing things

- SOTA competitor, natural baseline, or calibration agent
- We need to measure something & compare agents
- This is not about winning and losing ... its about telling the story of the data
- To tell the story accurately:
 - Properly reflect uncertainty
 - Properly how hard it was to get good performance
 - Properly reflect the impact of all choices
 - Stretch: properly reflect how well these algorithms might work in the real-world

Are our algorithms practically useful?

- Mountain Car, Sarsa(lambda) with tile coding
- Fixed start state, 0.5 decaying step size, 10 tilings 10x10

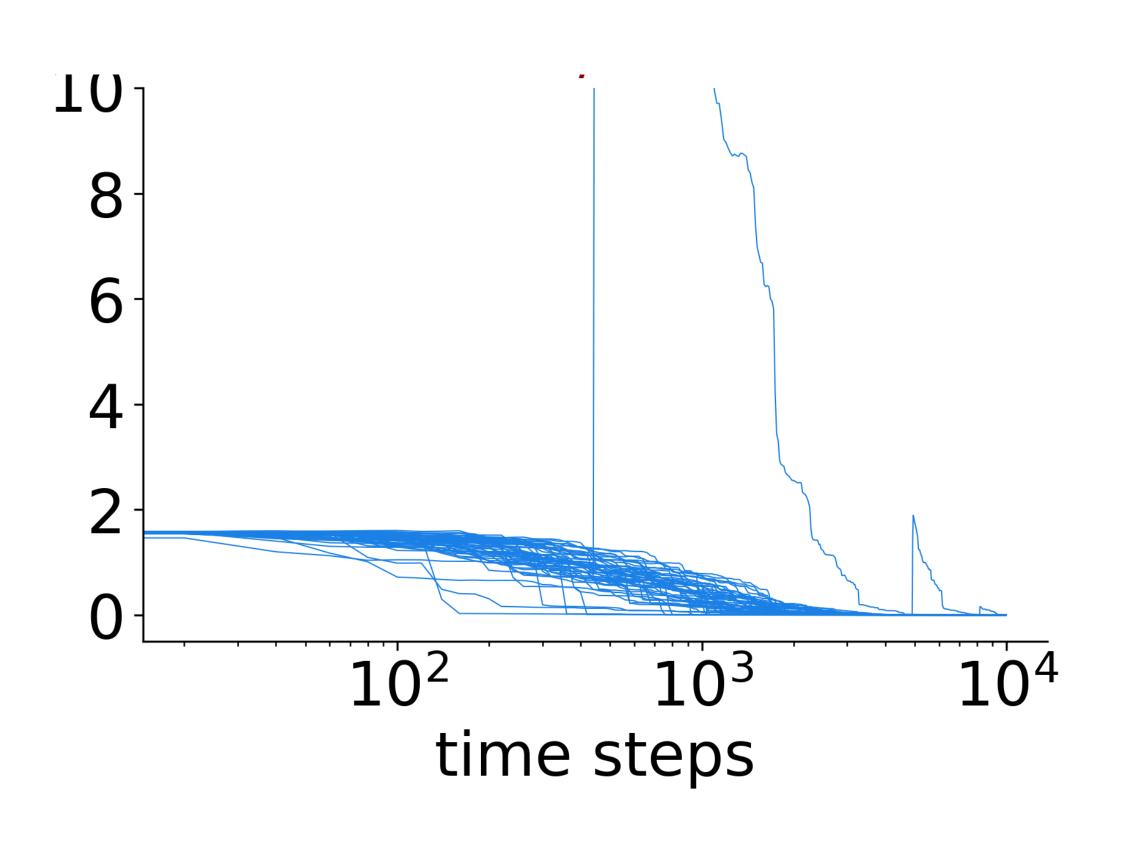




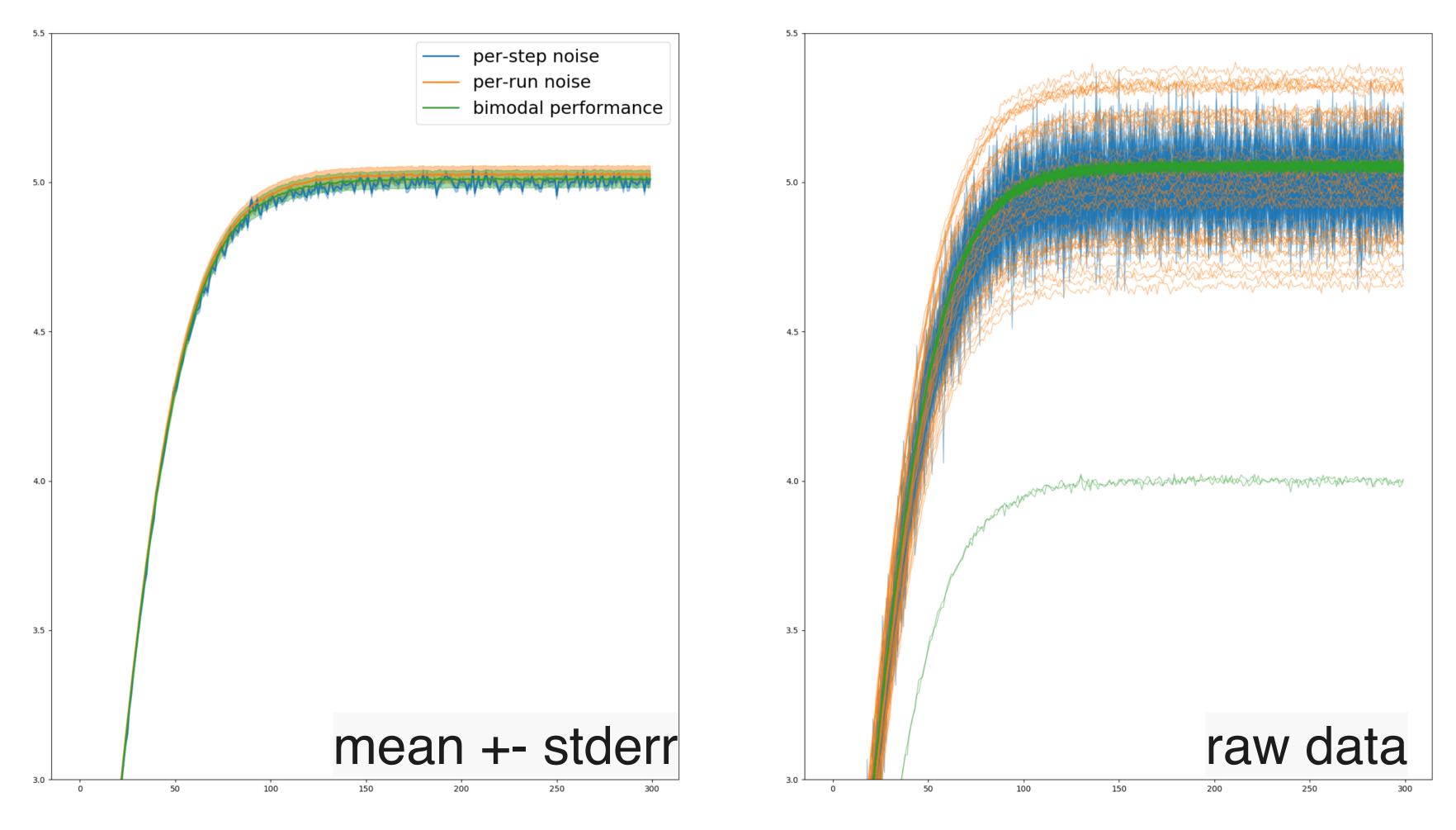
Without repetition we can say so little

- Experiment repetition is so important
- We don't want the results to be skewed by one algorithm getting lucky
 - Remember the MAB in Sutton&Barto...on some runs greedy is optimal
- We want to use statistical tools to talk about aggregate performance
- Hopefully we can build more reliable algorithms
- But we often need to look deeper to understand the mean & variance

The raw data can tell different stories



The raw data can tell different stories



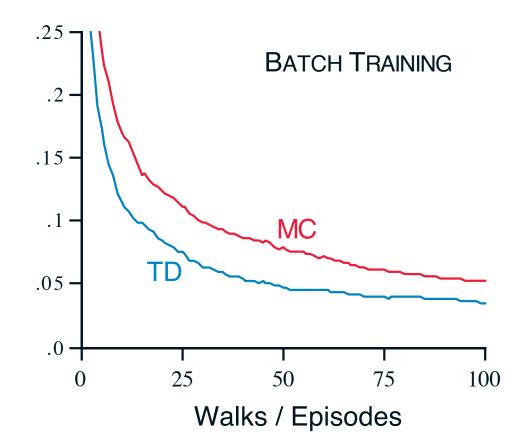
- 50 runs, 300 steps
- Credit: Andy Patterson

Which data/alg would you prefer?

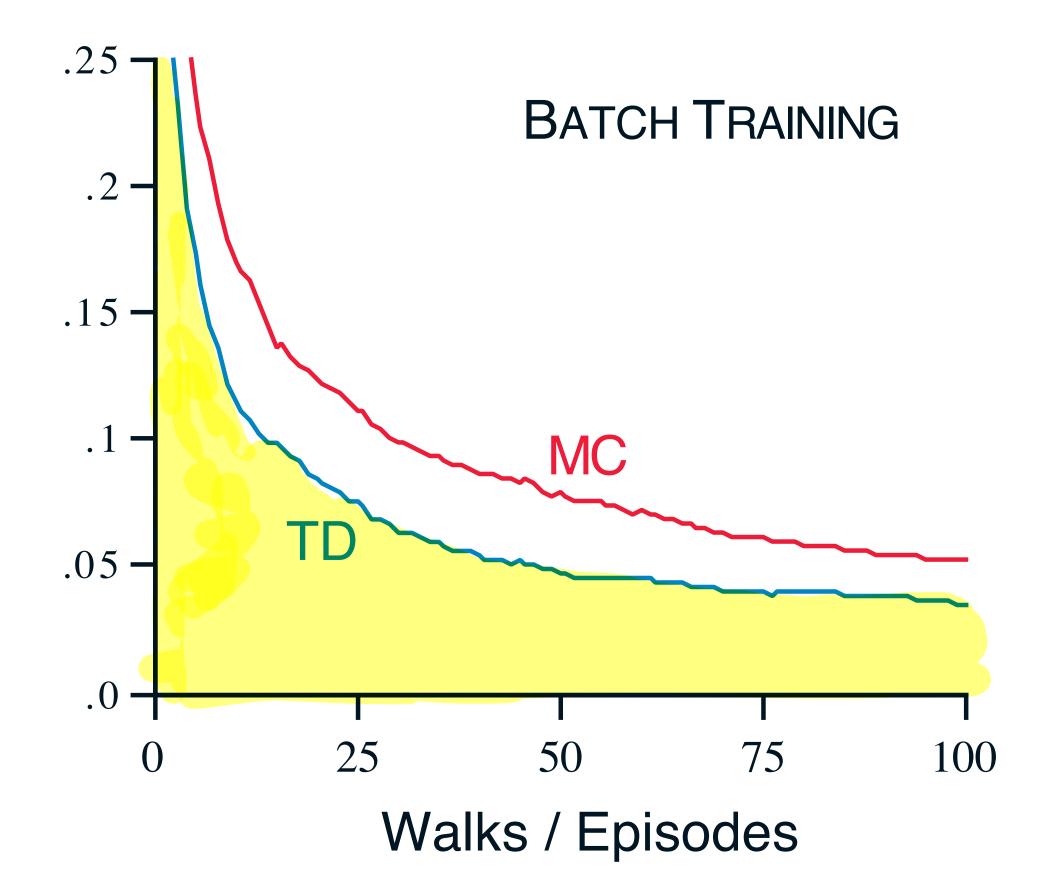
Agents & Environments are data generators

- understand what it looks like
- We want to turn a learning curve for a single run into a number
- The first step is deciding on a measure of performance:
 - Total area under the learning curve (AUC)
 - AUC of the large x% of the data
- Other measures focused on stability are also possible but we will start with the classic ones

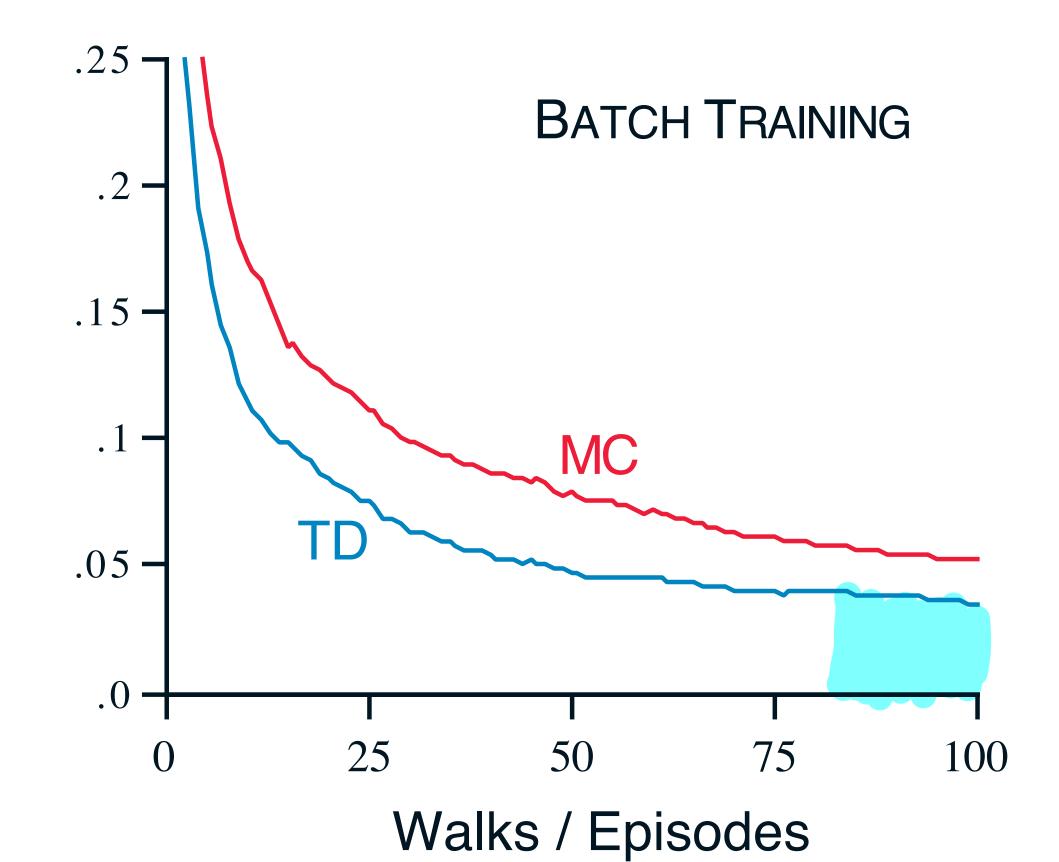
If we want to make statistical statements about the data, then we have to



Getting one number



These are importantly different when sweeping hyper-parameters



The distribution of performance

- like?
 - Bell shaped / Normal /Gaussian
 - Skewed
 - Multi-modal
 - Flat or point mass?
- run number for reproducibility
- What should we do about the hyper parameters?

• Given a set of AUC, one for each run, what does the distribution of those numbers look

Practical tip: set the seed for the environment and the agent independently, and use the

Your questions

- Should we have a special conference / event for competitive testing?
- Generative vs Discriminative models: <u>http://robotics.stanford.edu/~ang/papers/nips01-</u> <u>discriminativegenerative.pdf</u>
 - There is a relationship here to TD vs MC
 - For the RL context think of Model-based methods (e.g., DP) vs model-free
- Models that allow temporal abstraction (thinking jumps); challenges
 - Discovery problem (where do the options come from)
 - Off-policy learning: learning option policy and models in parallel
 - Using them for planning: open question

Your questions

- In Deep RL the Matters paper: TRPO on swimmer -> bad policy
 - Can we check this automatically? What's the problem?
 - Can we build this into the environment? Isn't it already?
 - More examples
- Does Whiteson et al's generalized environments pose a problem for current theory of RL with function approximation?
- Is the average reward formalism or algorithms useful in episodic tasks?

Your questions

- Why do we need off-policy learning?
- Tips on writing
- Tips or ideas for visualization

Admin

- Next week is spring break; no lecture, no office hours
- Session moderators for today: Tiriac, Valentin
 - https://docs.google.com/spreadsheets/d/ <u>1dbmlvduupZUCDjxU4HW2_350OVrVG-g1FoEAG-uWhMk</u>
 - Your job is to ask questions and moderate discussion!
 - If you cannot make your session, tell me ahead of time

Plan for today

- Continue our discussion about the distributions generated by RL experiments and why you should care
- A crash course in good presentations
- Discuss your questions & project standups

The distribution of performance

- like?
 - Bell shaped / Normal /Gaussian
 - Skewed
 - Multi-modal
 - Flat or point mass?
- run number for reproducibility
- What should we do about the hyper parameters?

• Given a set of AUC, one for each run, what does the distribution of those numbers look

Practical tip: set the seed for the environment and the agent independently, and use the

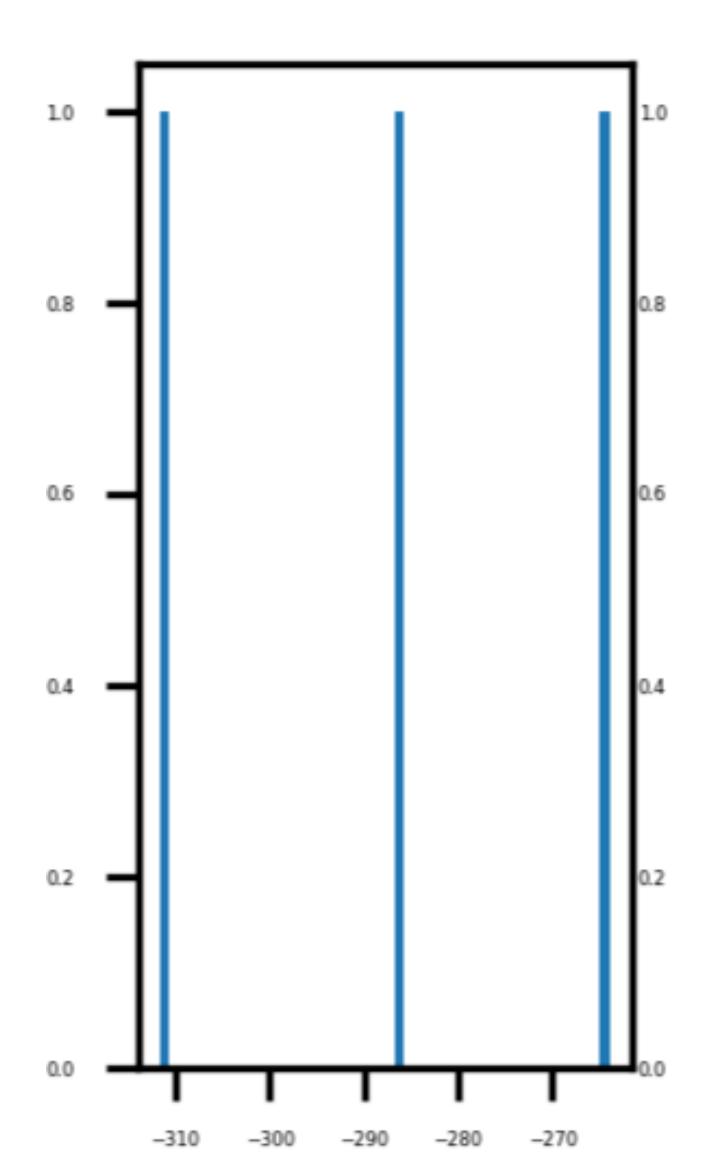
How many runs do we need?

- Common practice is 3
- In the literature you can find up to thousands of runs

- Let's run an experiment:
 - Mountain Car with random starts
 - Sarsa(lambda) with tile coding reasonable hyper parameter choices
 - We will plot mean episodic return over 250 episodes
- What story does the data tell?

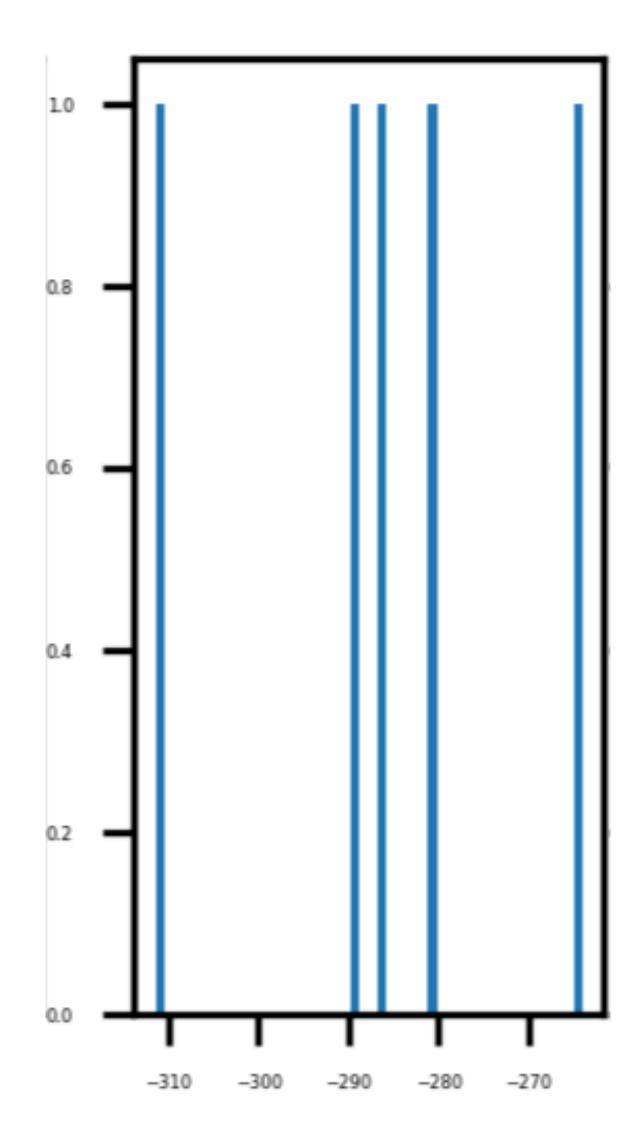
What if we did 3 runs?

 Histogram of mean episodic return over 100k steps (around 250 episodes)

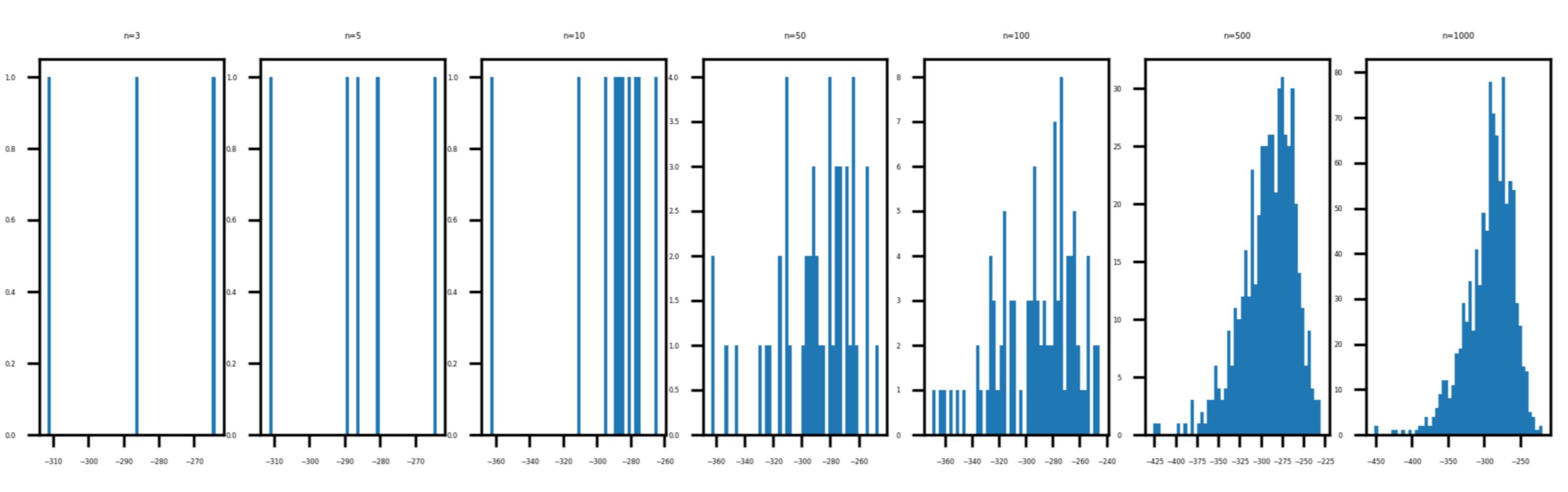


What if we did 5 runs?

 Histogram of mean episodic return over 100k steps (around 250 episodes)



Many runs are needed to see the shape of the distribution

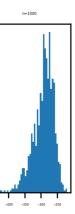


Estimating the agent's performance accurately requires many independent repetitions of the experiment

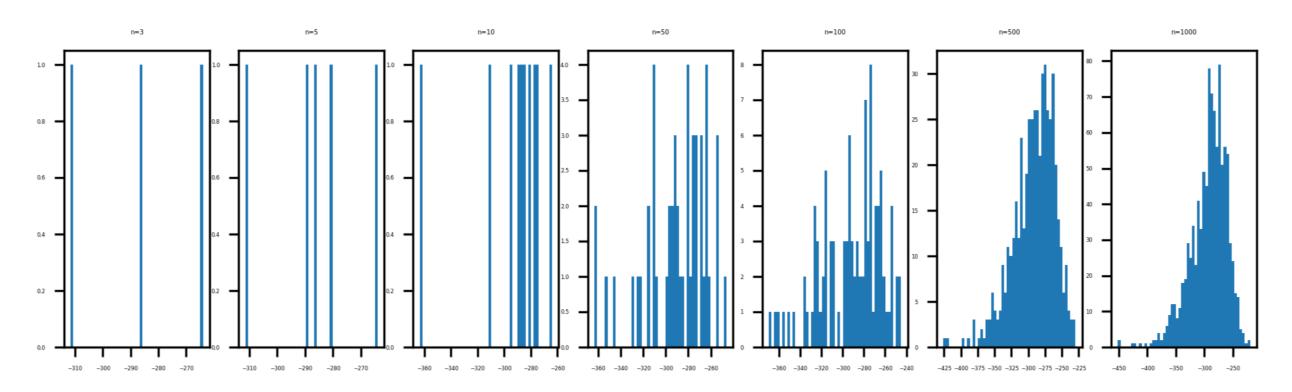
Histogram of mean episodic return over 100k steps (around 250 episodes)

Environments design choices matter too

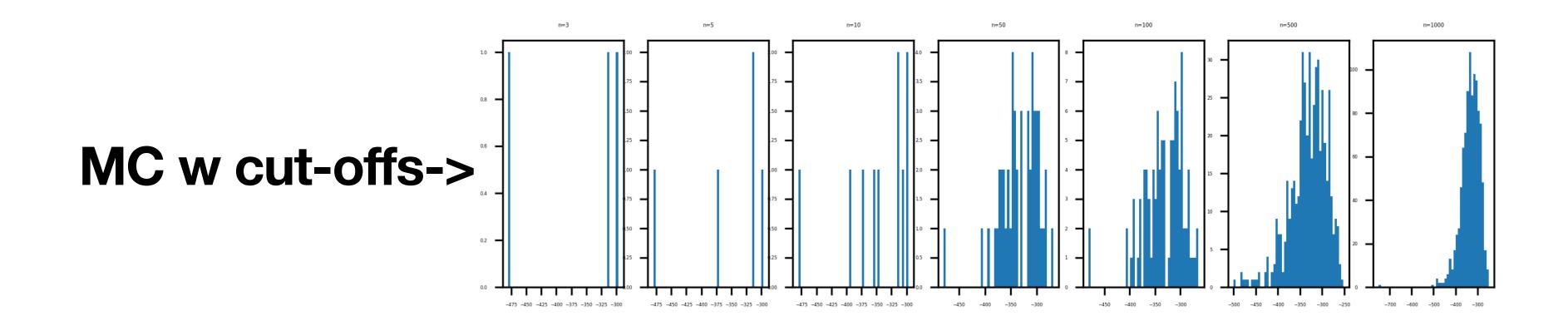
- Notice how the distribution was a bit skewed, not perfectly bell shaped
- We can get other distribution shapes by including cutoffs:
 - Restarting the episode if the agent reaches a max number of steps
 - This ensures the no episodes a really bad—might make bad agents look good
 - This gives free exploration especially if random starting states are used



Cut-offs skew performance



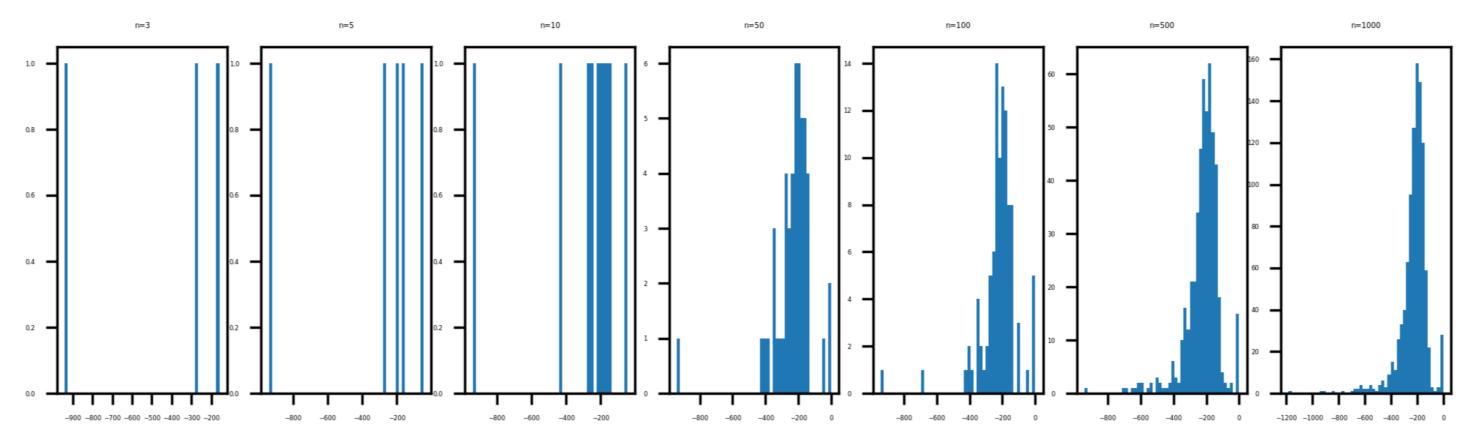
Regular MC->



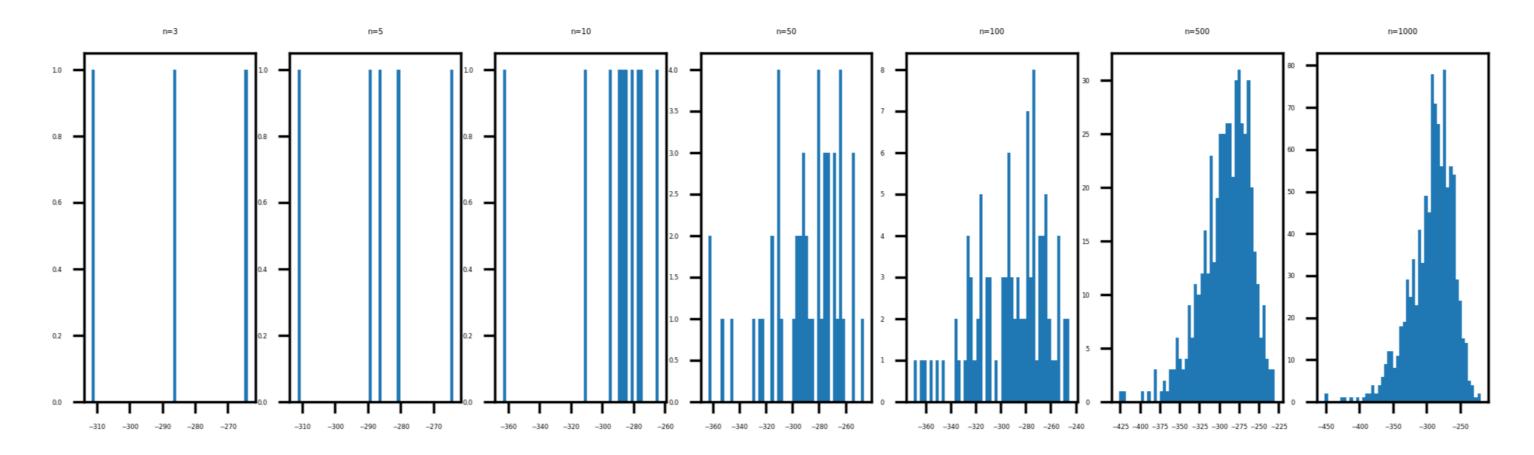
• 1000 step episode max

Every agent & environment pair can be different

• Same experiment and setup in Puddle world:

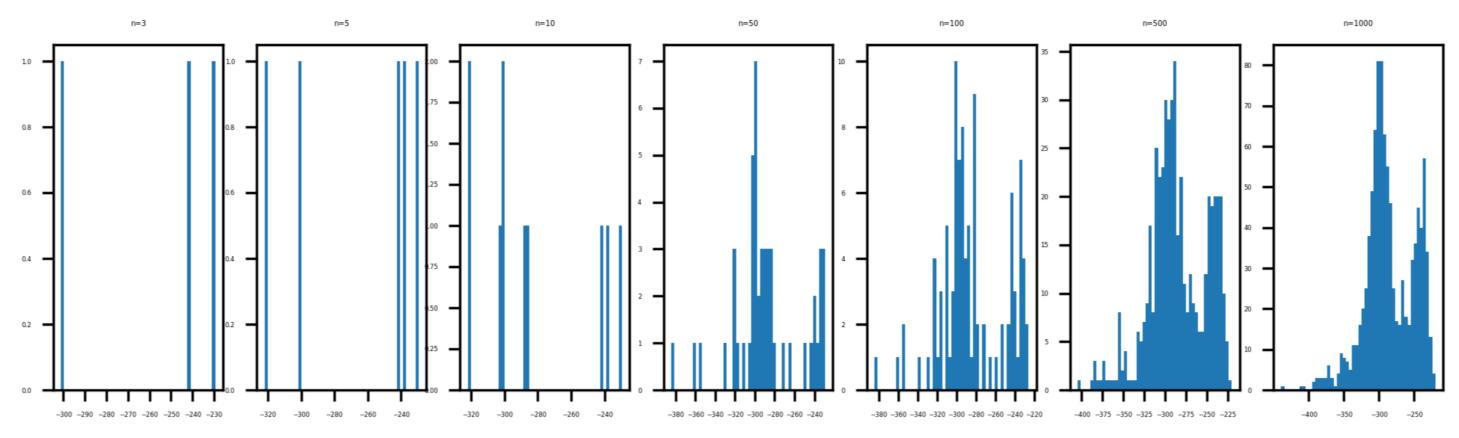


Mountain car:

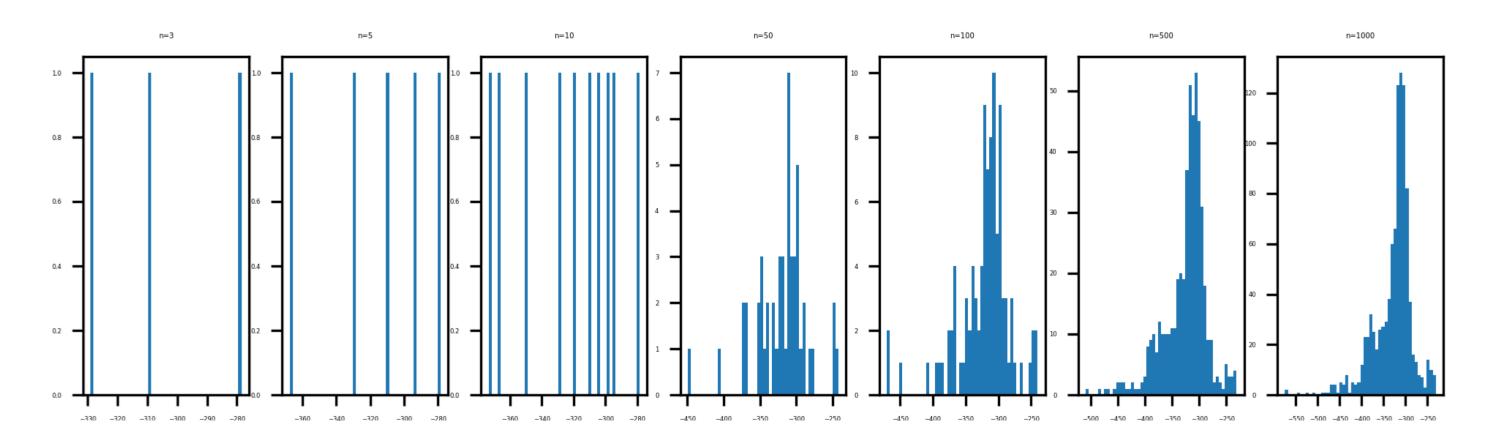


Design choices interact

• Mountain car with two different start states:

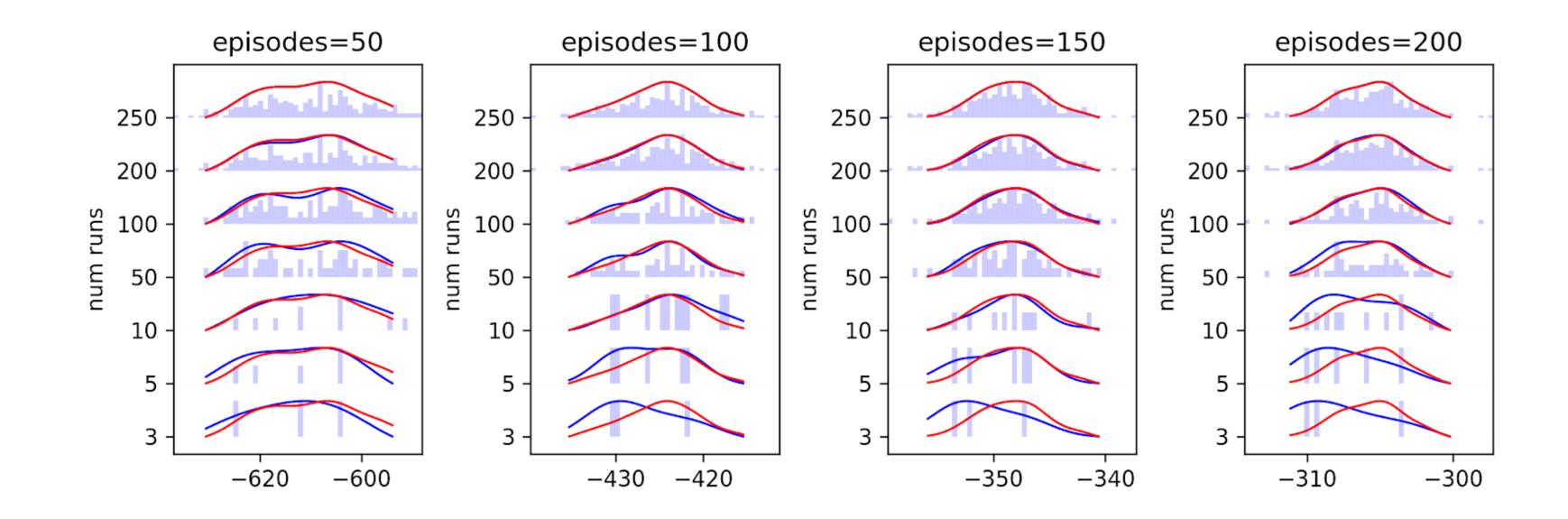


• Mountain car with two start states and cutoffs:



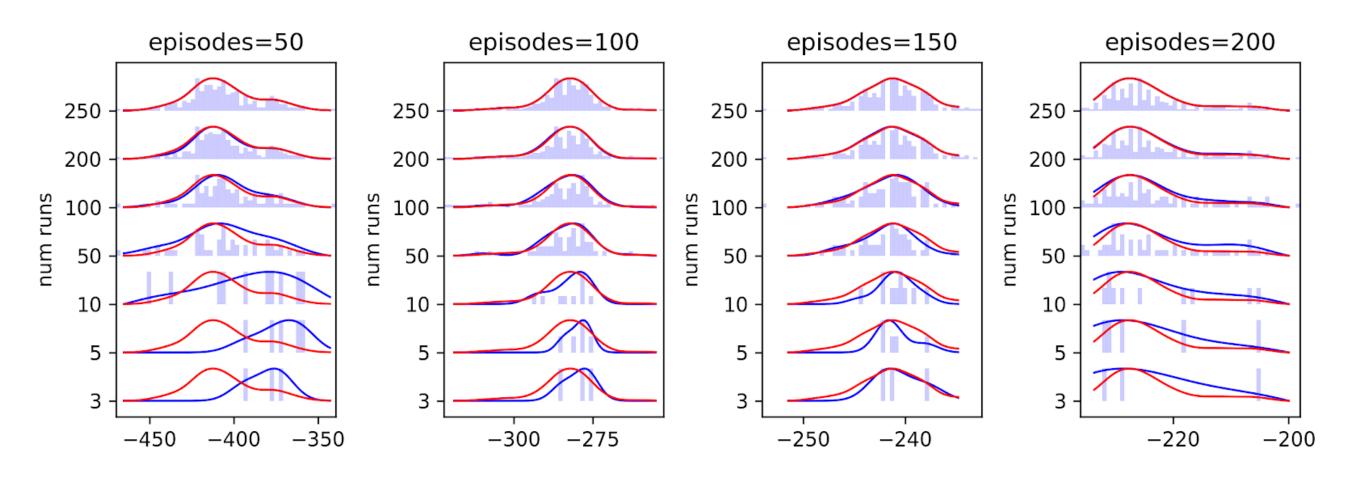
Experiment design choices interact too

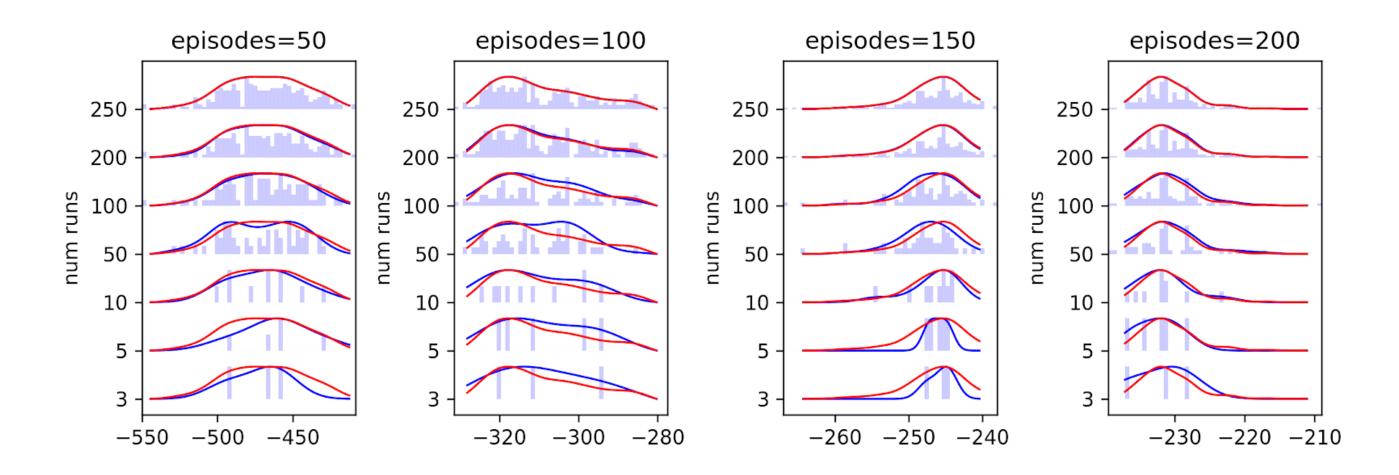
- and more runs
- We can also look at the dist with more and more episodes (MC) ...



In the prior plots we always ran 100k steps, and looked at the dist with more

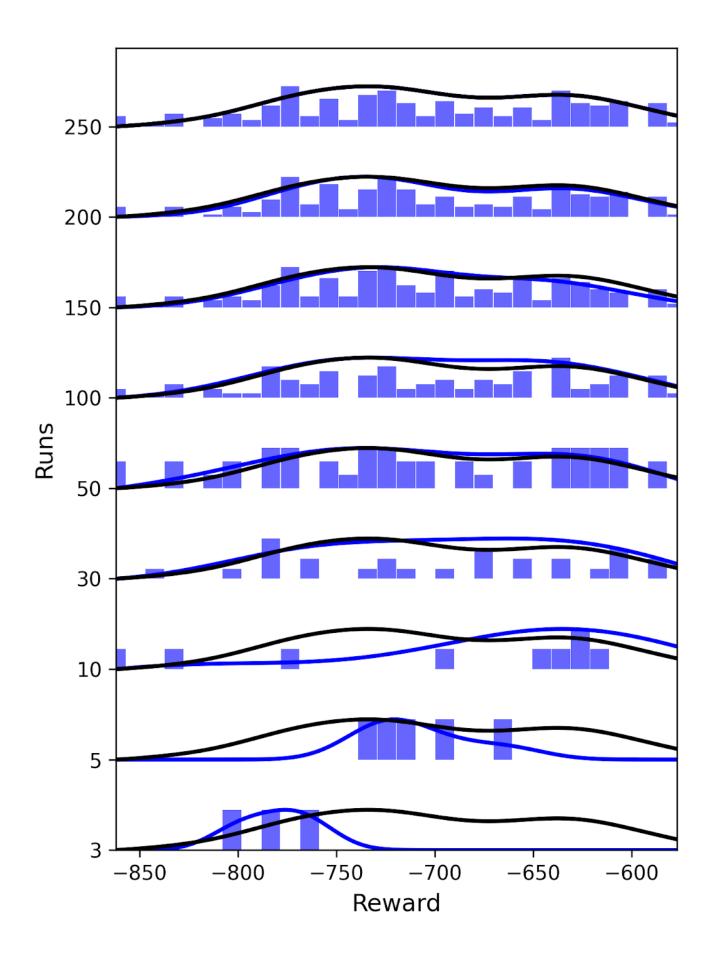
With and without cut-offs (median)



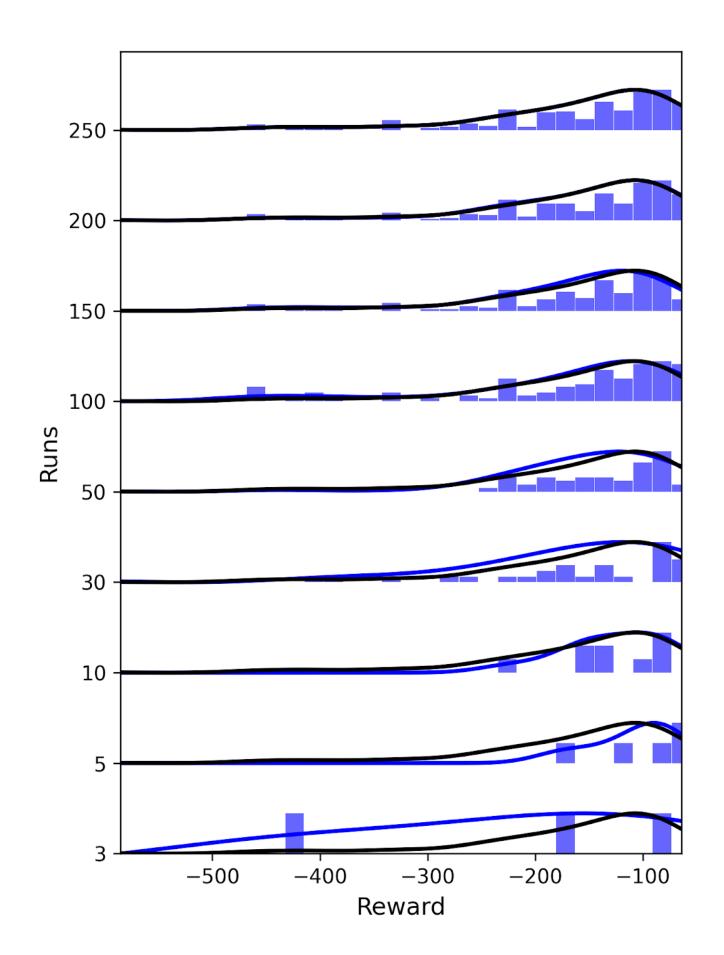


In puddle world we see impact of performance metric

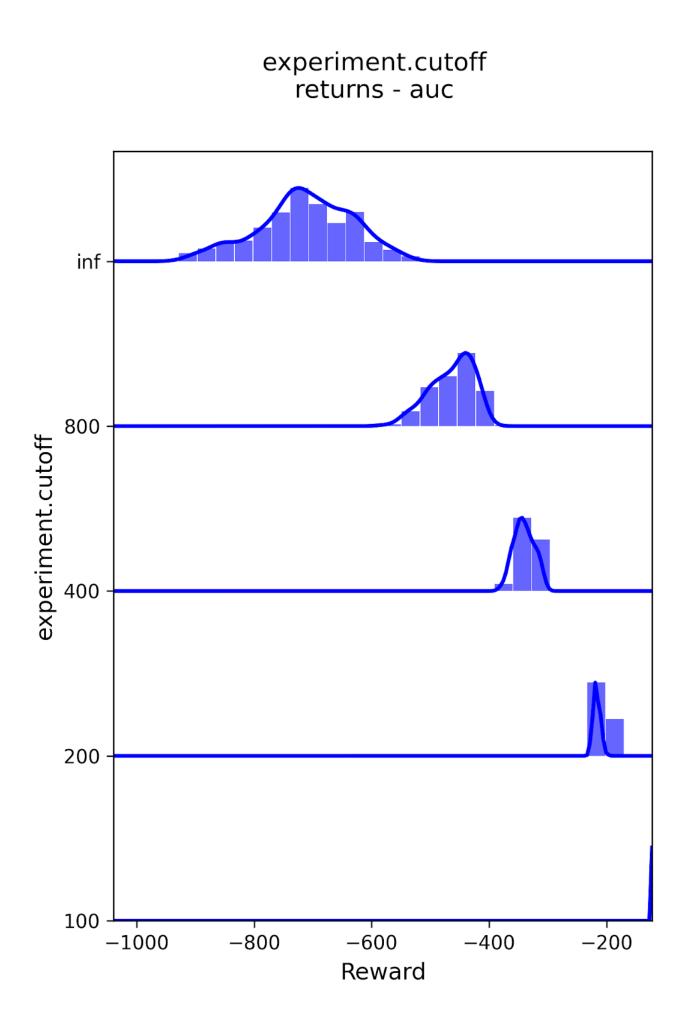
Runs returns - auc

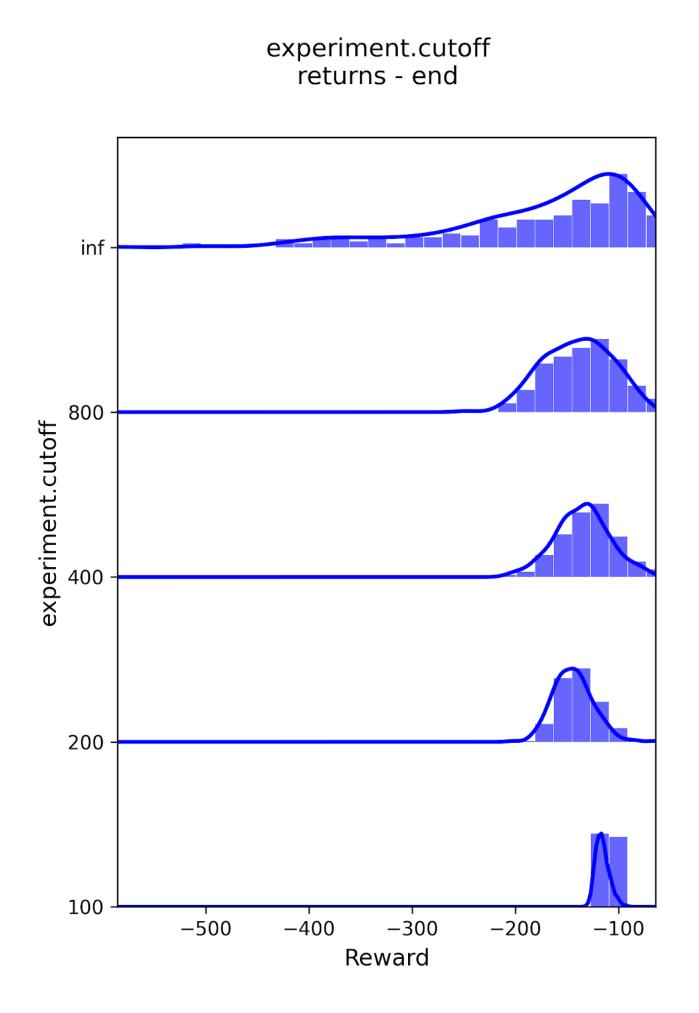


Runs returns - end



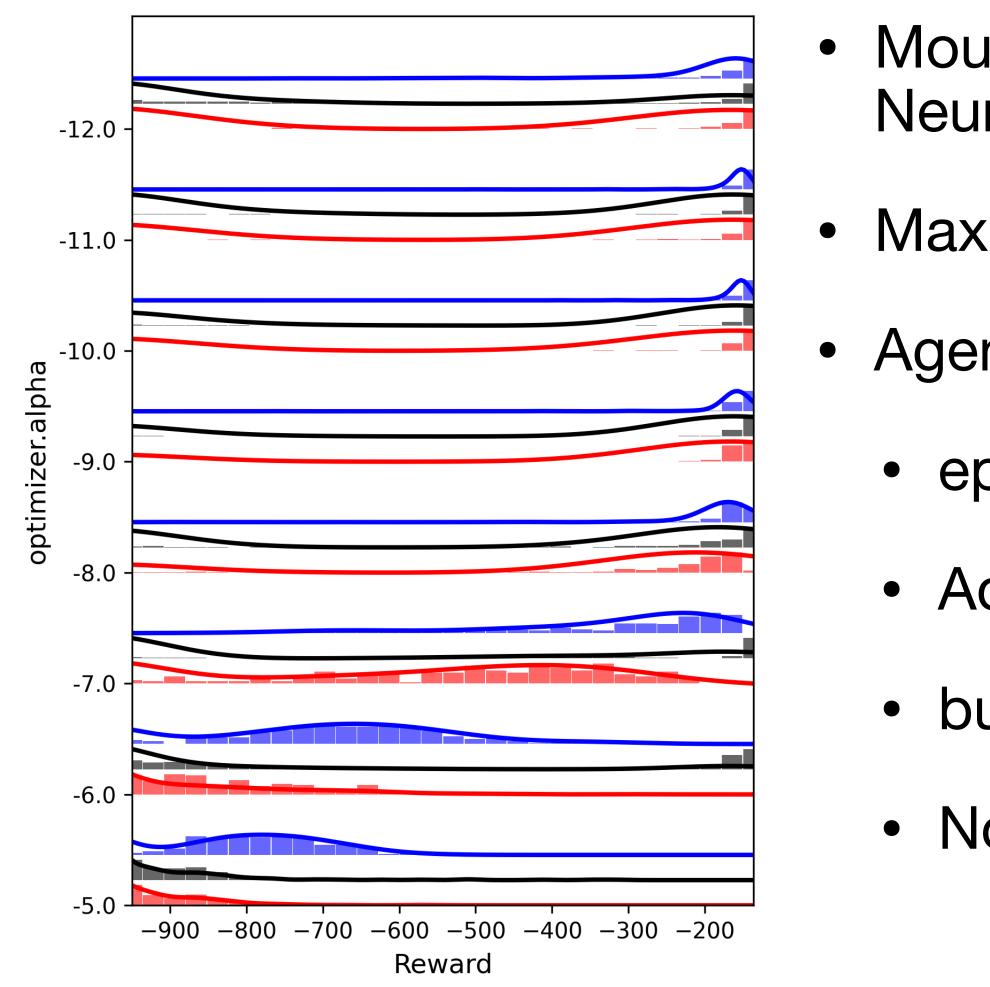
A closer look at cut-offs in puddle world





Bi-modality can even happen without explicit effort

MountainCar - mellowmax



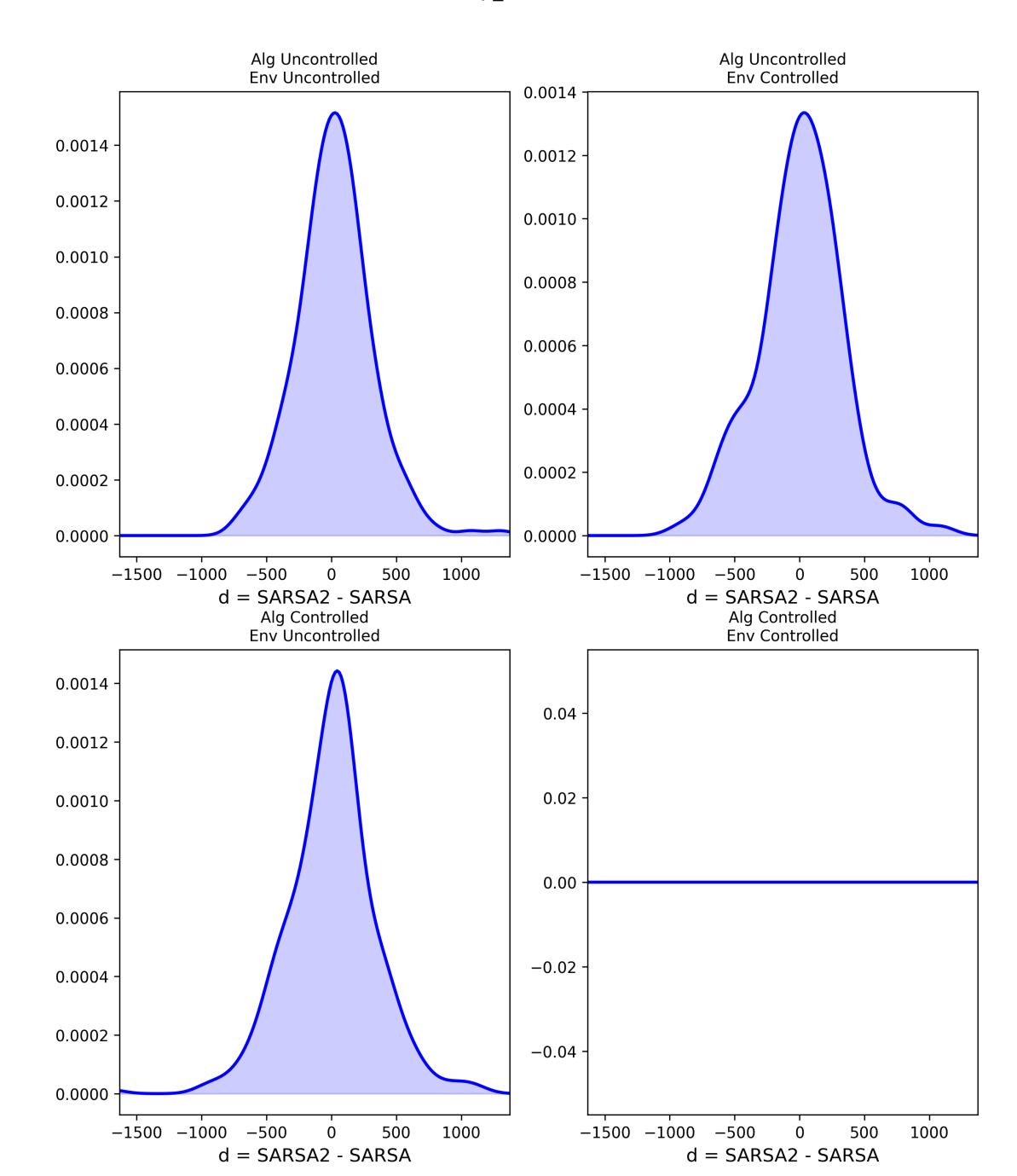
- Mountain car with 3 different algorithms and a Neural Network (2 layer, 32 hidden units, relu)
- Max episode length=1000, 100k steps total
 - Agent hypers:
 - epsilon=0.1
 - Adam with beta 1 = 0.9 and beta 2 = 0.999
 - buffer_size = 4000, batch_size=32
 - No target nets

Controlling randomness

- Typically both the agent and environment have different sources of randomness:
 - In mountain car the start states, and epsilon in the agent for example
- We can decide to control these sources of randomness or not:
 - Controlled means the seed to the agent/env random number generator is set with the run_number
- There are 4 possibilities for controlling and not controlling each

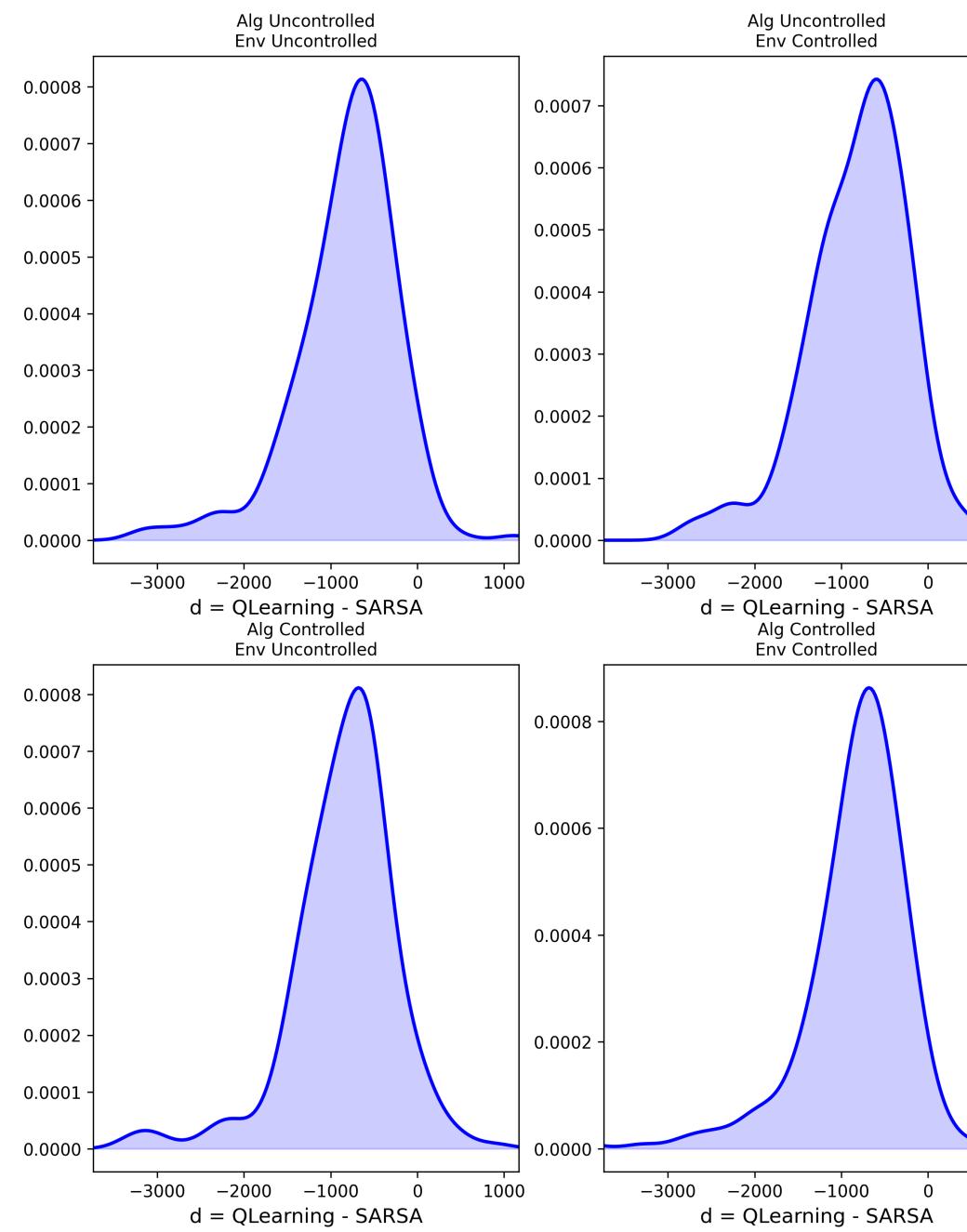
Controlling randomness: comparing the same algorithm (250 runs)

MountainCar step_return - auc



Controlling randomness: comparing Q-learning and Sarsa

Sarsa > Qlearning here



Controlling randomness: comparing Q-learning and Sarsa

but with only 5 runs

MountainCar step_return - auc





Why it all matters

- We can't always show all the data
- data will all be different
- We will be left with mountains of data; dozens of plots
- That's no fun for us, and certainly no good for a paper
- and confidence intervals to make broader conclusions

Worse: depending on experiment, environment, and agent design choices the

• We want to aggregate the data, and use statistical tools like hypothesis tests

You can't just compute error bars and report p-values blindly

Hypothesis testing

- Let's say we draw samples from two population, with true means m_0 and m_1
- We estimate the mean of each population: bar{x_0}, bar{x_1}
- Then we want to determine if the populations have different means
- We use a hypothesis test:
 - Null hypothesis: $m_0-m_1 = 0$ (the true means are the same)
 - Alternative hypothesis: m_0-m_1 != 0 (the true means differ)
 - We want to reject the null hypothesis!

How probable is it to observe this sample or a more extreme one, given that there is no true difference in the performances of both algorithms?

The p-value is that probability: to reject the null we want it to be extremely unlikely that we observe differences in the sample means given that the algorithms indeed perform differently!

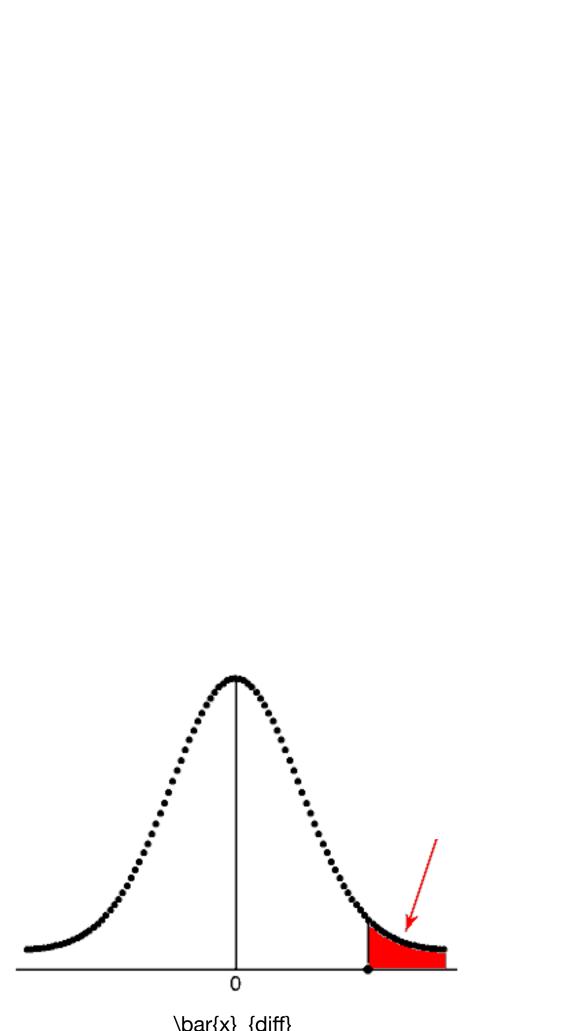
If your p-value is high, then your evidence (data) does not provide enough support to reject the null

Hypothesis testing

- Let X_1 be the random variable denoting the performance of algorithm_1
- Let X_2 be the random variable denoting the performance of algorithm_2
- If we assume X_1 and X_2 are normally distributed
 - Therefore X_{diff} = X_1-X_2 is normally distributed
- We want many samples of X_{diff} (say 30 or more)

Hypothesis testing procedure

- Let $X_{diff.1}$, $X_{diff.2}$ be a sequence of RV representing runs of the experiment and \bar{X}_{diff} = average of $X_{diff,1:n}$
- True distribution over the differences: $X_{diff} \sim p_{true}, i \cdot e \cdot , p(\bar{x}_{diff})$ is density
- Sample $\bar{x}_{diff,0}$ // we run an experiment
- Assume null hypothesis: p_{null} is defined such that $\mathbb{E}[\bar{X}_{diff}] = 0$
 - This is the hypothesized model of p_{true}
 - E.g., p_{null} might be a mean-zero Gaussian over \bar{x}_{diff}
- **Question**: how likely is $\bar{x}_{diff,0}$ under H_0 i.e., how likely is it that we would see $\bar{x}_{diff,0}$ or a more extreme value: $p_{null}(X_{diff} > \bar{x}_{diff})$ (if unlikely, then our model likely wrong)



 $bar{x}_{diff}$

Is the difference significant?

A difference is called significant at significance level $\lambda = 1 - \frac{1}{2} + \frac{1}{2} +$

Key assumptions in hypothesis testing

- We most often use a t-test (and standard error bars)
- They assume the distributions of performance are Normal
- (each agent)
- Same sample size
- Continuous and bounded performance distributions
- Equal standard deviations

Performance is measured at random and independently from one another

Break time

Then part II: giving presentations

Tips for giving research talks Giving a good talk is hard!

- It is stressful; there are factors out of your control
- You are worried if your content is correct/accurate and if your style is clear and effective
- Everyone is different styles and preferences
- It is very easy to sit back and critique someone's talk—much easier than giving a good one yourself
- Worst of all: we have to perform
- Good talks require a balance of: good content, dynamic delivery, clear & simple imagery, and lots empathy for the audience

High-level strategy: be simple and direct Assume the audience will not follow a complex story

- You are too close: You know so much about the details over your work
- The audience barely knowns anything: about your specific project
- They are easily distracted ad easily confused
- Make the talk structure simple
- Make the messages simple and direct: don't imply say what you mean • Try to get across ONE (15min or less); TWO (20-30min); THREE (>30min)
- main messages

Talk structure Tell them where things are going, again and again

- Start with a title slide:
 - Explain the title—like define the words
 - Retell the story of the research; perhaps how it all start or the main learning
 - Note collaborators (with pictures) and where you did the work

Talk structureMotivate your work strongly

- Use the next few slides to define your problem more informally
- Focus on why the problem is interesting and hard
- Focus on why solving it matters (useful in another algorithm, real application...)
- Use pictures and diagrams to help people visualize the story
 - Less text in this part of the talk is better
- Try to think of an overall theme or story to help keep attention
- Strongly connect with prior work
- This is your introduction

Make an outline Tell them where you are going again

- E.g.: "1. Why we need step-size adaption, and what has been done before; 2. Stepsize adaption for online temporal difference learning, ... "
- Avoid meaningless categories, like: "1. Motivation; 2. Related work; 3. Algorithm ... "
- Helps the read know what is coming next and also functions as the main take-home messages of the talk
- I like to do it as:

Empty boxes

That get checked off as we go through the talk

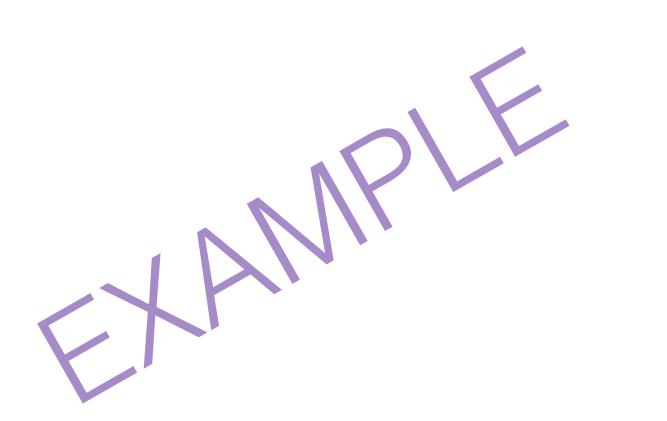
Successes and lessons related specifically to:

D Hardware

Data collection and control

Learning setup

D Evaluating progress



Never define more than you need There is a jargon budget and a notation budget

- Think of the minimal set of notations and equations your can use to convey the technical aspects of your work
- Same goes for terminology:
 - Do you need to define "online-aware" algorithms
 - Or can you always just describe what that means in simple plain English words
- This minimalist principle applies to figures, diagrams, results, algorithms and conclusions

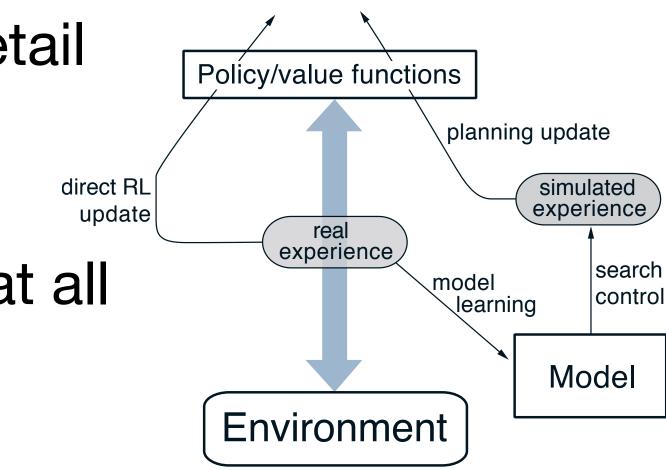
Continually check in on your audience You have already lost them

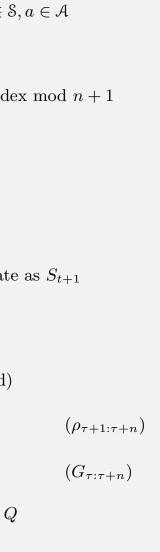
- Go back to your outline and recap what stage of the talk we are at
 - What are the conclusions so far
- Plan to ask the audience questions; perhaps with slides
- Have single slide messages (a slide with one line of text in large font)
- Never show them equations, diagrams or figures you plan to rush through or skip
 - "Anyway lets skip to the bottom of the derivation"
 - "Ignore all those other lines and subplots ..."
- Take the time to view the work from the audiences perspective

Describing algorithms Think of the key details

- Code blocks are rarely useful
- Try to describe at a high level the main ideas of the algorithm
- Walk through the algorithm in increasing levels of detail:
 - Slide 1: three line English description of the algorithm
 - Slide 2: sub-bullets describing each component in more detail
 - Slide 3: perhaps introduce notation and equations
- Try to make a block diagram of your algorithm and refer to it at all three levels of the description

Off-policy *n*-step Sarsa for estimating $Q \approx q_*$ or q_π Input: an arbitrary behavior policy b such that b(a|s) > 0, for all $s \in S, a \in A$ Initialize Q(s, a) arbitrarily, for all $s \in S, a \in A$ Initialize π to be greedy with respect to Q, or as a fixed given policy Algorithm parameters: step size $\alpha \in (0, 1]$, a positive integer n All store and access operations (for S_t , A_t , and R_t) can take their index mod n+1Loop for each episode: Initialize and store $S_0 \neq$ terminal Select and store an action $A_0 \sim b(\cdot|S_0)$ $T \leftarrow \infty$ Loop for t = 0, 1, 2, ...: If t < T, then: Take action A_t Observe and store the next reward as R_{t+1} and the next state as S_{t+1} If S_{t+1} is terminal, then: $T \leftarrow t + 1$ else: Select and store an action $A_{t+1} \sim b(\cdot | S_{t+1})$ $\tau \leftarrow t - n + 1$ (τ is the time whose estimate is being updated) If $\tau > 0$: $\rho \leftarrow \prod_{i=\tau+1}^{\min(\tau+n,T-1)} \frac{\pi(A_i|S_i)}{b(A_i|S_i)}$ $G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i$ If $\tau + n < T$, then: $G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})$ $Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \rho \left[G - Q(S_{\tau}, A_{\tau}) \right]$ If π is being learned, then ensure that $\pi(\cdot|S_{\tau})$ is greedy wrt Q Until $\tau = T - 1$

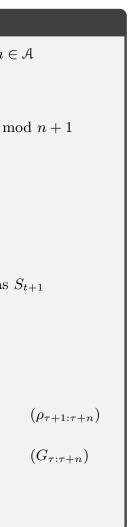




Describing algorithms If you are gonna do it...

- Cover up parts of the code and uncover them as you go
- Use color, highlighting and blocks to emphasize particular details
- Walk them through the algorithm; take the agent's point of view
- Tell them why it is import to understand the algorithm at this level of detail

```
Off-policy n-step Sarsa for estimating Q \approx q_* or q_{\pi}
Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s \in S, a \in A
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A
Initialize \pi to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size \alpha \in (0, 1], a positive integer n
All store and access operations (for S_t, A_t, and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq terminal
   Select and store an action A_0 \sim b(\cdot|S_0)
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
      If t < T, then:
          Take action A_t
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
          If S_{t+1} is terminal, then:
             T \leftarrow t + 1
           else:
              Select and store an action A_{t+1} \sim b(\cdot|S_{t+1})
      \tau \leftarrow t - n + 1 (\tau is the time whose estimate is being updated)
       If \tau \geq 0:
          \rho \leftarrow \prod_{i=\tau+1}^{\min(\tau+n,T-1)} \frac{\pi(A_i|S_i)}{b(A_i|S_i)}
          G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
           If \tau + n < T, then: G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})
           Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \rho \left[ G - Q(S_{\tau}, A_{\tau}) \right]
           If \pi is being learned, then ensure that \pi(\cdot|S_{\tau}) is greedy wrt Q
   Until \tau = T - 1
```



Question yourself, for other Think about what might be confusing to the audience

- As you go through your slides
- As you practice your presentation
- Write down questions an outsider might wonder about:
 - "Why couldn't we just use RMSProp here?"
 - "I don't see why the Hessian would not be invertible?"
- Raise these questions in your talk and answer them:
 - "You might be wondering ..."
- next?"

Related: always arrange your slides and bullets to answer: "what would they want to know

Presenting empirical results Take it slow

- First discuss the overall objective of the experiments:
 - "We ran three experiments to investigate the our new"
- Do everything one at a time:
 - One experiment at a time
 - First the problem /environment: described without reference to the agent
 - Then the solution methods
 - Then the way the experiment was set up & run and how the results we processed
 - One thing per slide. For example:

Empirically evaluating AdaGain

- We conducted experiments in two domains:
 - A state-less tracking problem
 - A multi-step prediction problem using real robot data
- The objective of these experiments were (one for each problem):
 - To investigate how AdaGain adapts in a continual learning setting compared with existing approaches
 - To evaluate how AdaGain performs with high-dimensional, non-stationary data

State-less tracking problem

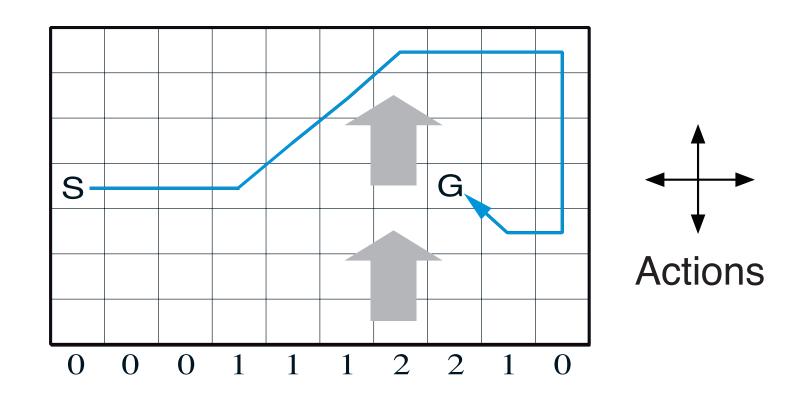
- In this problem the objective is to track the expected value of the target signal, where the underlying process follows a random walk
- Define the problem precisely ...

Algorithms compared

- We compared AdaGain with a mixture of well-know methods from deep learning, as well as several older methods from the meta-descent literature
- In particular we compared: AdaGain, RMSProp, Adam, SMD, AdaDelta, IDBD, . . .
- Explain any particular details of interest
- Highlight key hyper-parameters or implementation details
- This might take multiple slides

Experiment #1: state-less tracking

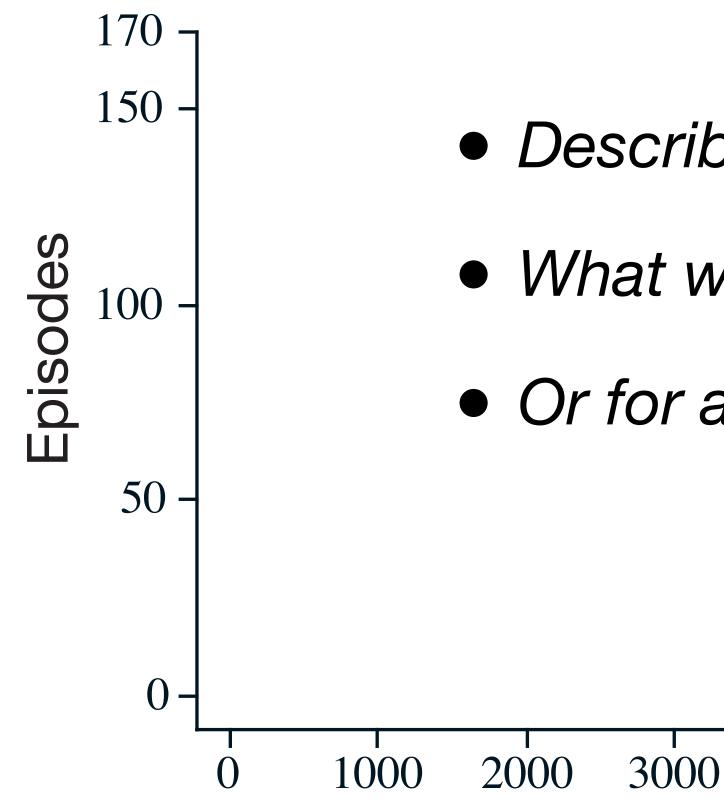
- We ran each step-size method for 1 billion time-steps
- We computed the average reward per step, and average the results over 50 independent runs
- We set the hyper-parameters of each method with an extensive sweep:
 - Describe parameters, ranges, and selection criteria
- Use pictures



Experiment #1: results

- One plot at a time
- Start with a simple plot that is easy to describe
- Use annotations, colours, arrows, and animations to control the flow of information and keep everything manageable
- Tell the audience simple things like "up on this plot is good"
- Put the main message of the result at the bottom of the slide...build it in last

Experiment #1: results (only one plot per slide)

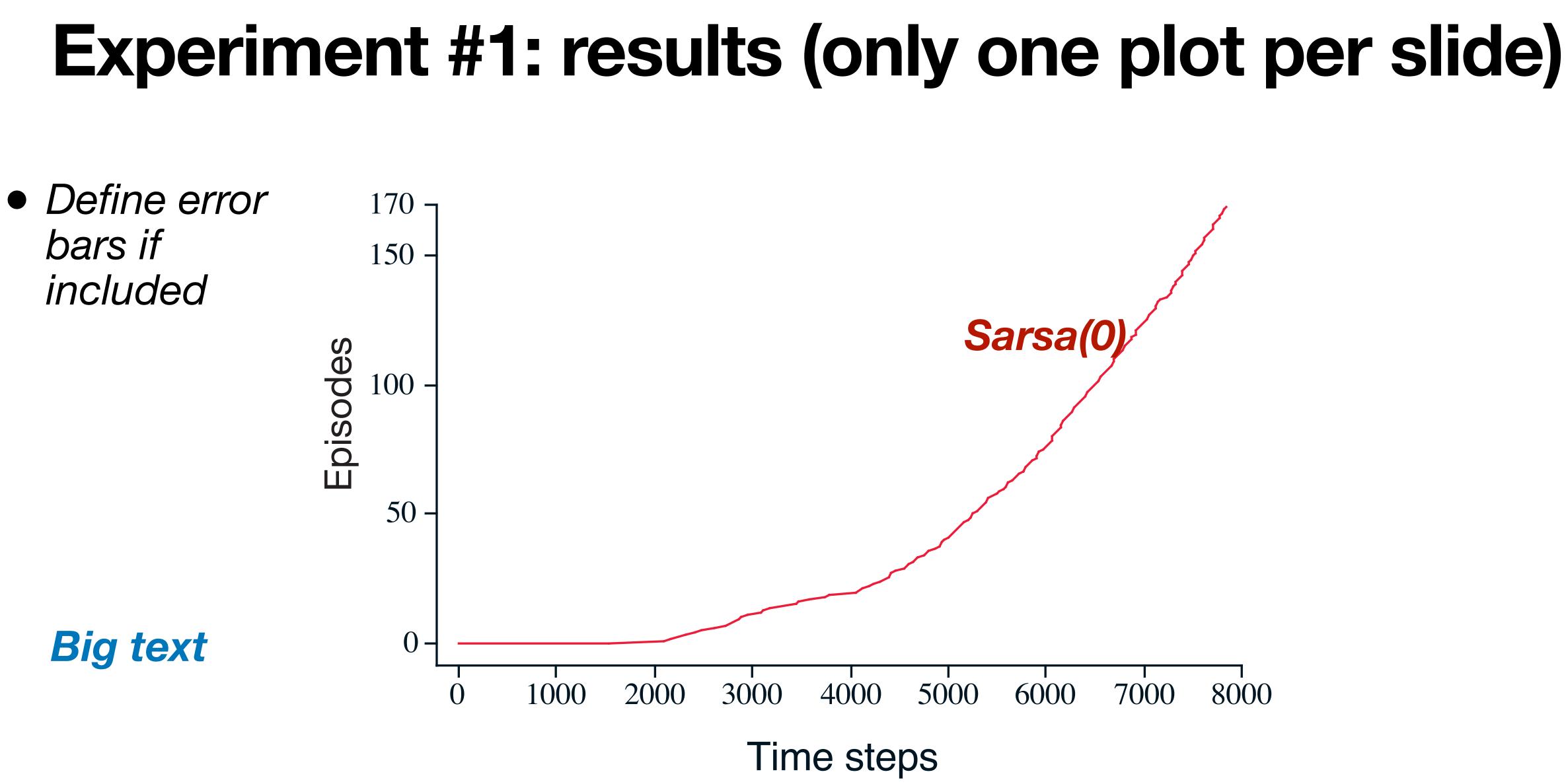


• Describe axis first

• What would the plot look like for a good algorithm?

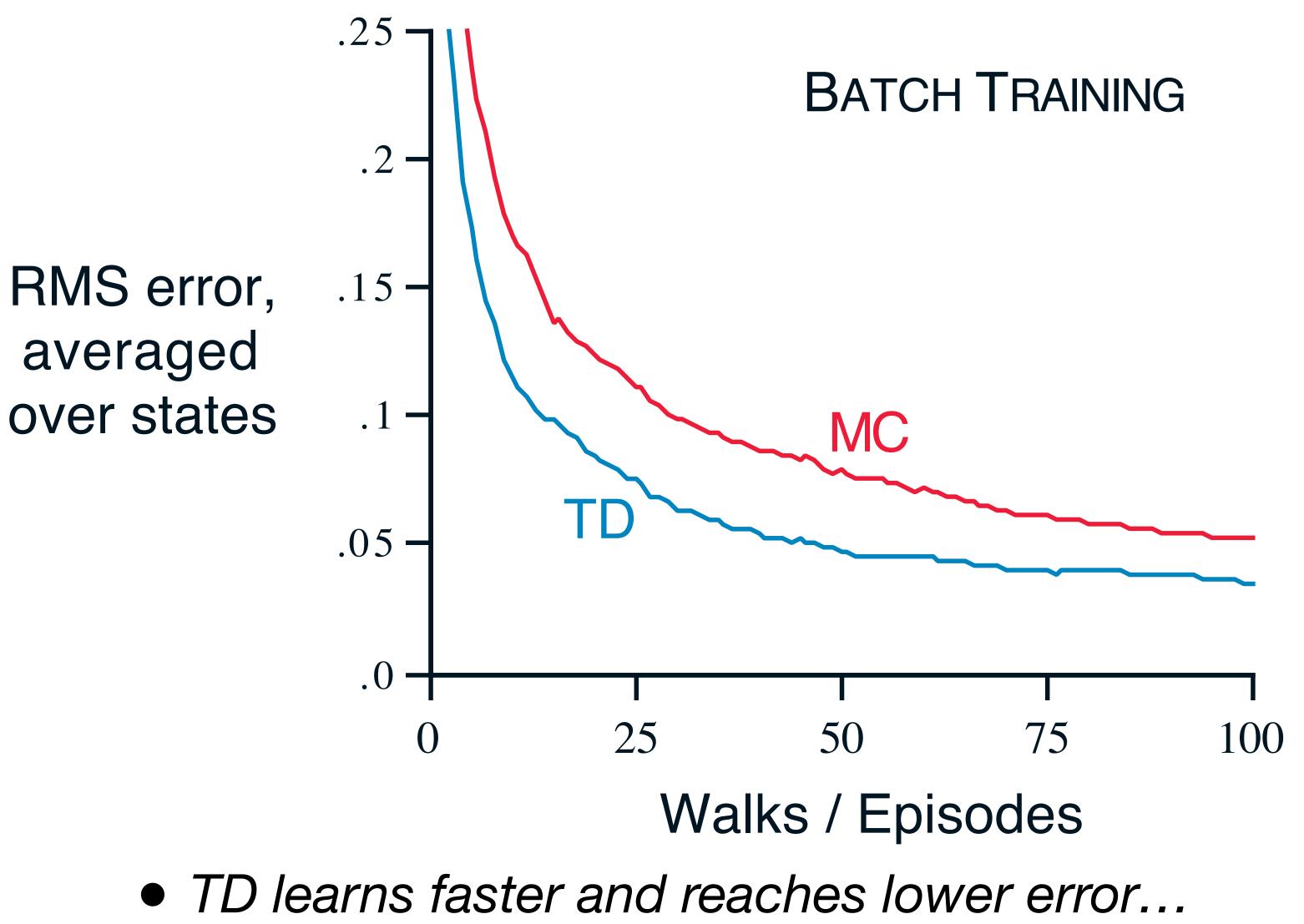
• Or for a bad one

6000 7000 4000 5000 8000 Time steps

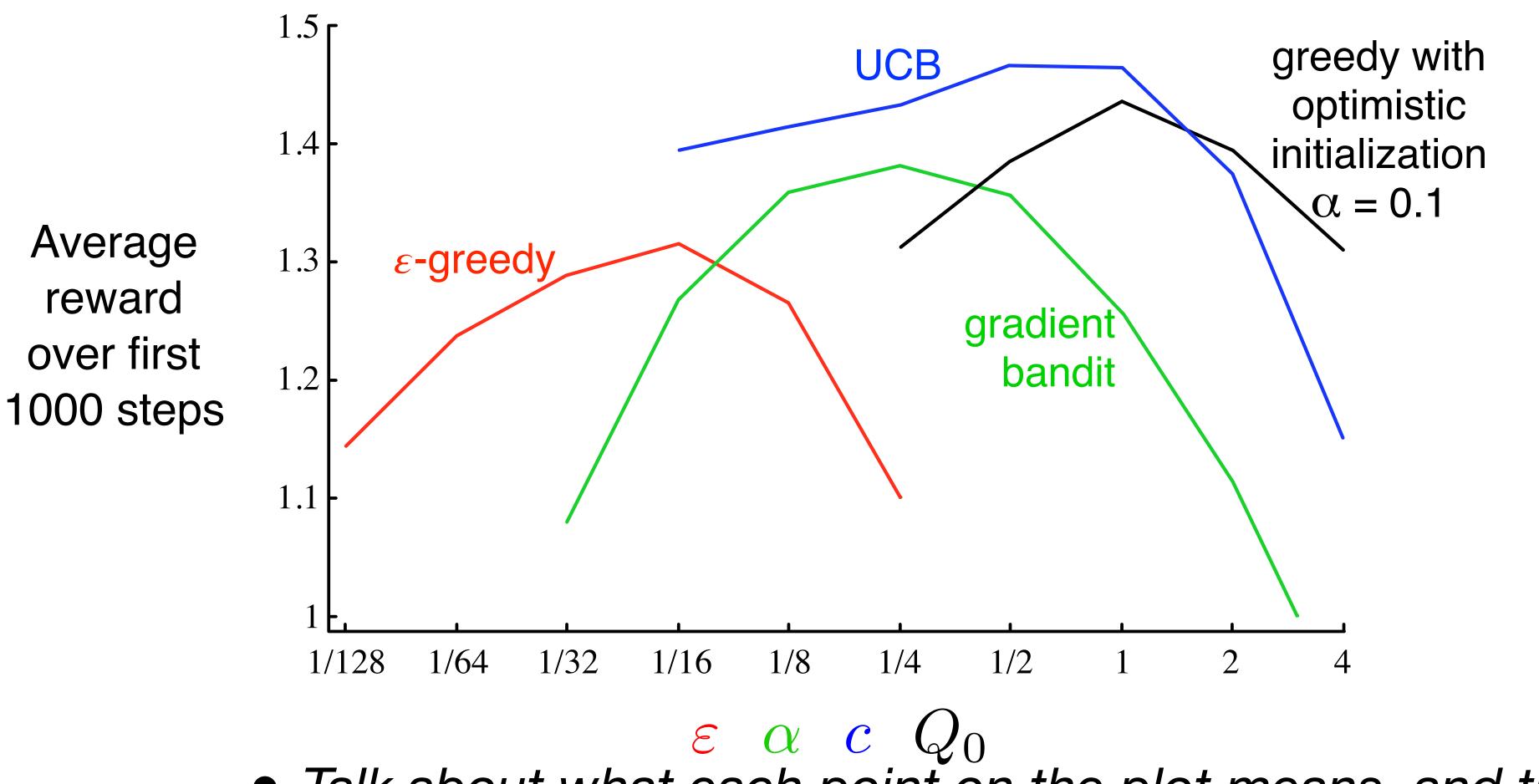


• Sarsa complete episodes at a faster and faster rate

Experiment #1: results (now comparing algs)



Experiment #1: results (progress to the complex)



• Talk about what each point on the plot means, and the shape

Summarize the results and make conclusion

- DON'T OVER CLAIM
- Tell the high-level take home messages
 - Ref specific results as needed
- Talk honestly about limitations and negative results
- - not "I invented TD++ and its always worse than TD" bad topic

• We want to tell the story of what happened, **not sell** someone something

• Presumably you are giving the talk about something with interesting results

Wrap it up and look to the future

- Revisit your outline and take home messages
 - Tell the audience we got though everything I wanted to discuss
 - This is the way I think you should think about it
- Finish with Future-work / limitations
 - All good work is limited—you had to narrow the scope to make progress
 - Future work is often about lessening some of those limitations

Low-level advice

- Be prepared for lots of questions: everyone will think and do differently
 - That doesn't matter, but its essential you can explain the "why" of all your choices
- One idea per slide
- Slide titles should be thought of as conclusions or topic sentences
- SLOW DOWN but be excited
- Use running examples "imagine you are driving home in the rain"; keep going back to the example
- Use **bold**, *italics*, and **color** whenever you want
- There are lots of rules: length of slide titles, bullet punctuation & grammar, slide #'s
 - Low priority compared to constructing a simple and engaging talk

The main goal is getting everyone to understand what you did and why The secondary goal is making them believe its a significant contribution

Project standup

- 30second to 5 minute summary of your project
- Thing you are most focused on now
- Open question for the group:
 - Anything you are currently stuck on?